
`

Predicting Risk of Pre-Release Code Changes with

CheckinMentor

Alexander Tarvo*

Brown University

Providence, RI

alexta@cs.brown.edu

Nachiappan Nagappan, Thomas Zimmermann,

Thirumalesh Bhat, Jacek Czerwonka

Microsoft Corporation

Redmond, WA

{nachin, tzimmer, thirub, jacekcz }@microsoft.com

Abstract—Code defects introduced during the development of
the software system can result in failures after its release. Such
post-release failures are costly to fix and have negative impact on
the reputation of the released software. In this paper we propose
a methodology for early detection of faulty code changes. We
describe code changes with metrics and then use a statistical
model that discriminates between faulty and non-faulty changes.
The predictions are done not at a file or binary level but at the
change level thereby assessing the impact of each change. We
also study the impact of code branches on collecting code metrics
and on the accuracy of the model.

The model has shown high accuracy and was developed into a
tool called CheckinMentor. CheckinMentor was deployed to
predict risk for the Windows Phone software. However, our
methodology is versatile and can be used to predict risk in a
variety of large complex software systems.

Keywords — code change, risk, software metrics, code branch

I. INTRODUCTION

Faulty changes, made during the development of the
software system, must be detected and fixed before the system
is released. Otherwise they can cause post-release failures.

Fixing a post-release failure is costly because it requires not
just implementing a fix, but also to test the change and to issue
an update for the software system. As a result, post-release
failures remain a severe problem in all kinds of software
systems. But one area which suffers the most is, probably, the
mobile software. The size and complexity of mobile software
approaches those of traditional desktop software. At the same
time, high competitiveness of mobile market forces developers
to reduce time between releases of mobile platforms, which
leaves less time for extensive testing and quality control. Most
importantly, post-release failures result in user dissatisfaction
and can reduce sales of an otherwise successful product.

The key method to either avoid or at least decrease the
number of post-release failures is thorough testing of all the
changes made before the system’s release (pre-release
changes). However, extensive testing is an extremely time-
consuming and costly enterprise by itself. Thus some method
of test prioritization is necessary. The most widely used
approach is to assess the risk of code changes. The change is
risky if it has a high probability of introducing a failure. Such
changes could be subject to additional testing.

Often, the risk of a change is estimated by an expert or a
group of experts (e.g. code review). However, the manual
estimation of the change risk is subjective as it relies on skills
and experience of experts. Furthermore, it is hardly applicable
to large systems, where hundreds and even thousands of code
changes can be made every day. This necessitates development
of an objective and automated solution for risk prediction.

Existing approaches [3][9][13] predict risk of code changes
made after the system’s release. But usually these post-release
changes are smaller and much less frequent. As a result,
existing methods for risk prediction do not scale well when
applied to larger and more numerous pre-release code changes.

We present a general-purpose approach to predict risk of
pre-release code changes in a large modern software system.
To the best of our knowledge this is the first paper dedicated to
predicting risk of pre-release code changes. We do not predict
risk of individual functions, files or binaries. We rather predict
risk of individual changes (a single change can affect multiple
source files, binaries, or functions) to make it more actionable
for the user to identify the impact of these changes.

We develop and validate our methodology using the data
on a Windows Phone 7 mobile OS, but it can be easily applied
to any large software system. We describe each code change
with metrics and use a statistical model to predict its risk. We
evaluate various metrics, such as the size of a change,
properties of the changed components, and historic code churn.
To ensure that our approach is applicable to a wide variety of
software systems, we use only data sources that are common
for virtually all the modern software projects.

Training a statistical model requires knowledge of which
code changes are risky and which are not. This information is
normally not available for the pre-release changes, and to
quantify risk of existing changes we use our modification of
the SZZ algorithm. Another novel aspect of our work is taking
into account branching information in the software system
(here the term “branch” denotes a separate copy of the source
code in the version control system). In particular, we show how
multiple code branches can affect collection of change metrics
and, ultimately, the accuracy of the prediction model. Our
model and the corresponding data collection process were

* Alexander Tarvo was a research intern in the Microsoft Research when this
work was carried out.

`

implemented as a web application named CheckinMentor.
CheckinMentor has been used on the daily basis by the
Windows Phone team.

The rest of the paper is organized as following. In the
Section 2 we provide a survey of related work. In the Section 3
we discuss data collection. In the Section 4 we explain our
definition of the change risk. In the Section 5 we describe the
set of metrics we use to describe changes. In the Section 6 we
describe our experiments. The Section 7 presents threats to
validity of our work and the Section 8 concludes the paper.

II. RELATED WORK

Predicting risk in software systems is a well-studied area.
Most of the publications are dedicated to predicting fault
proneness of individual components of the software system
[2][10][11][12][14][15][16][20]. In a fault proneness model the
system is divided into a number of components, and each
component is described by metrics (numeric properties). A
statistical model is normally used to discriminate between
faulty and non-faulty components (Kim et al [21] use a cache-
based algorithm instead). A notable extension of fault
proneness models are the effort-based models [23] that also
predict the amount of effort required to test the component.

Various metrics have been used to predict fault proneness:
Menzies et al [17] used code metrics such as component size
and complexity; Basili et al [18] relied on object-oriented
metrics; Zimmermann and Nagappan [11] used dependencies
between the components. Nagappan and Ball used code churn
to predict defect density in components [10]. Hassan [19] used
entropy-based change complexity measures to predict the
number of faults. Metrics mined from the e-mail archives [22],
organization structure [2], and socio-technical networks [12]
proved to be good predictors of faulty components.

Fault proneness models point to components that are likely
to fail, but they cannot predict risk of failure for individual
code changes. Nevertheless, a similar approach can be used to
predict risk of code changes. Code changes are described with
metrics and then a statistical method is used to discriminate
between “risky” and “non-risky” changes. However, predicting
risk for the code changes appears to be a less explored area.
Authors of this paper are aware of a few publications on the
subject, all dealing with post-release changes only.

Mockus and Weiss [9] predicted risk of code changes in the
telecommunication system using logistic regression. The
metrics include: the size of the change, the number of changed
components, and the experience of the developer. Authors
report the percentage of Type I and Type II errors in (20%;
40%). Kim et al [13] collected information on about 12,000
post-release changes in 12 open-source programs. They used a
support vector machine to discriminate between risky and non-
risky changes. The precision of the model ranges in (0.44;
0.85) and recall is in (0.43; 0.86). Shihab et al predicted
subjective risk for changes, as it is perceived by developers, in
the mobile-phone software [24]. Tarvo [3] predicted risk for
post-release changes in the Windows OS. Metrics used by the
author include change size, properties of changed components
and dependencies between those, and developer experience.
The resulting classifier had the area under ROC curve of 0.77.

One reason for the lack of research on the topic is the
difficulty of collecting a dataset for training a statistical model,
which involves measuring actual risk of changes and labeling
them as “risky” or “not risky”. Some authors rely on subjective
estimation of risk by programmers, which may not reflect the
actual probability of introducing a failure [24]. In other cases
[3] such labeling can be mined from software repositories. But
usually it must be inferred. Unfortunately, existing algorithms
for automated labeling of code changes such as SZZ [1] are
computationally intensive and cannot be readily applied to
infer risk of pre-release changes in a large software system.

Our work makes a number of important contributions to the
state of the art:

 to the best of our knowledge, this is the first paper on
predicting risk for pre-release code changes;

 we propose a novel algorithm to label risky code
changes in the training set;

 we study the effect of code branches on data collection
techniques and on the accuracy of the resulting model.

III. DATA COLLECTION

Before predicting risk for new code changes the statistical
model must be trained using data on existing changes. The
training dataset must include two aspects of information on
changes: change metrics and change risk. Change metrics are
the numeric characteristics of the change that form predictor
(independent) variables in the model. The risk of the change
defines a target (dependent) variable.

Training dataset can be collected using data on the previous
release of the system, or from a similar system. Change metrics
are collected using the data on pre-release code changes in that
system. Change risk is determined using data on bug fixes that
occurred after its release. Thus collecting metrics and
determining risk of changes become the most important aspects
of our data collection stage.

A. Source of information on the software system

Our goal is developing a general-purpose approach that can
predict risk for various large software systems. This imposes
specific requirements for change metrics, and, correspondingly,
to sources of information about changes:

1. Expressiveness. Metrics should capture important
characteristics of the code changes and be effective
predictors of their risk;

2. Portability. Metrics must be easily computed for different
products and development teams regardless of the
specifics of engineering process and tools they use;

3. Performance. Predicting risk for code changes must be
done on a regular basis. As a consequence, computation of
change metrics should not take a long time;

Because of these requirements change metrics may differ
from metrics used in fault proneness models. In particular,
highly expressive metrics can be non-portable and have low
performance. One example of expressive but non-portable
metrics is organizational metrics. These metrics require
knowledge of organizational hierarchy at the specific date
when the change was made, which might not be available for

`

certain teams. Another example of expressive but low-
performance metrics is dependency metrics. The structure of
the system can change frequently during the pre-release
timeframe. As a result, dependency metrics must be
recomputed for each pre-release code change, which usually
takes a long time.

Despite such strict requirements, we have developed a set
of metrics which allow for high prediction accuracy, but still
can be quickly computed using only sources of information
used by the vast majority of development teams – a version
control system and a bug-tracking database.

The version control system (VCS) stores a complete history
of changes in the source code of the program. The
representation of the history in the VCS is two-fold. On the one
hand, each change is represented as a checkin – a record that
contains detailed information on a change, including the date
and time of the change, its textual description, the list of the
changed files, and the name of the developer who made the
change. From the point of risk prediction, a checkin is the one

single entity that most naturally corresponds to the notion
of the “code change”. On the other hand, the VCS also tracks
the history of changes in the source code of the system. For
each source file f the VCS stores a set {f[1],…,f[m]} of its
previous revisions. For each revision f[i] we can retrieve the
corresponding checkin and the textual diff between f[i] and the
previous revision f[i-1].

The VCS provides comprehensive information about code
changes themselves, but it does not provide rationale why
those changes were made. This data is stored in the Bug
Tracking Database (BTD) in form of bug records. Each bug
record is identified by a unique identifier and contains
information such as the type of the work item (is it a bug, a
new feature, or another type of the change), a list of people
who worked on the issue, and other useful data.

The checkin and the bug record can be related to each
other. For example, a bug fix in the system should be reflected
both as the change in the source code (and, correspondingly, as
a checkin in the VCS) and as the bug record in the BTD.
Unfortunately, discovering such relations is not easy. Although
the ID of the corresponding bug can be entered as a part of the
checkin description field, there is no single format respected by
the engineering teams. Similarly, the checkin ID can be entered
into the bug record, but it is not required. Furthermore, the bug-
to-checkin relation is not defined for all the changes: for

example, not all the changes made during the development of
the system will be reflected in the BTD. Nevertheless, a
relation between checkins and bugs is important; we use it to
build a training set for the risk prediction model.

B. Branches and their impact on data collection

A code branch is a separate copy of the system’s source
code with its own history of changes. Branches are used to
distribute and isolate development of a program across
multiple teams of engineers. Nowadays practically all large
software systems are developed using multiple code branches.

Normally, a team maintains their own private copy of the
program’s code in a separate feature branch. When a developer
changes system’s code, she commits the change (we call such
changes “plain” checkins or edits) into the corresponding
feature branch.

Once a certain milestone is reached, development teams
submit their changes into the main branch (also called trunk)
during the process called reverse integration. To improve the
stability of the system, integrations can traverse one or more
interim branches (see Figure 1) before reaching the trunk. We
call resulting changes in the trunk and in interim branches
integration checkins.

After all the teams copy their changes into the trunk, the
system is being tested. As the system reaches an acceptable
level of quality, all the code from the trunk is copied back into
the feature branches – this process is called forward
integration. Forward integration ensures that developers will
use the latest version of the system’s code while working on
the next milestone.

Branches facilitate engineering process because changes
made by each team on the ongoing basis will not affect other
teams working on different parts of the system. But as a result
of branching various types of code changes (integrations and
plain checkins) are scattered across multiple code branches.
This implication is not that important for fault proneness
models, which concentrate on overall changes in the
components of the system. But it is crucial for our model that
concentrates on individual checkins. Here branching poses an
important question: for what kind of checkins we should
predict risk: plain checkins, integration checkins, or both?

In the context of our work, we predict risk for plain
checkins only. There are important reasons for this.

Figure 1: Code branches in a software system

Legend: plain fix integration fix reverse integration forward integration

C53

C52

C51

C49

C48

C41

C40

C38 C36 C32

C37 C33 C30 C35

C44 C45 C43

Interim branch I1

Interim branch I2

Trunk branch T

Feature branch Fb1

Feature branch Fb2

`

First, plain checkins are the actual changes made by the
developers, and these are the checkins for which management
wants to know their risk.

Second, a single integration checkin may contain changes
from multiple plain checkins. It would be impossible to
determine how individual plain checkins contribute to the risk
of the integration checkin.

Third, integration checkins contain the same overall set of
code changes as plain checkins. They do not add any new
information about code changes, but rather cause loss of
important pieces of information about plain checkins:

 code churn. Some files can be changed multiple times
before being integrated into the trunk. However, in the
trunk only a single change will be recorded;

 developer who made the change. Edits and
integrations are usually performed by different people.
Analysis of integration checkins will not yield
information about the developer who made the change;

 bugs. Integration checkins usually do not contain
information about associated bugs. If present, this data
is available only in individual edits.

As a result, mining multiple branches is necessary to collect
history of changes in source files. Complications associated
with mining historic code churn from multiple branches are
discussed in the Section V.

IV. DEFINING RISK OF THE CHECKIN

To train our risk model we must mark which pre-release
checkins in the training set are risky. We state that a pre-

release checkin is risky if it causes a bug fix after the
system’s release. Such checkins are also called as “bug-
introducing” checkins.

Different methods for identifying bug-introducing checkins
have been proposed. In [3] the author relies on the special field
in the bug record, which points to the bug-introducing checkin.
In [24] authors used developers’ subjective estimation of the
checkin risk. These approaches proved to be successful for
building risk models for post-release checkins, where bug-
introducing checkins can be identified manually. However, this
information is generally not available for the pre-release
checkins because of the large number of such checkins.

To address this problem the SZZ algorithm [1] can be used.
SZZ relies on a combination of annotation graphs and
heuristics to identify bug-introducing checkins. The key
assumptions of the SZZ are 1) if the bug is found it will be
fixed and 2) the fix for the bug affects the same area of the
code (function, line) of the system. The SZZ is considered to
be accurate; however, it requires computing annotation graphs
for each source line affected by the change. This is acceptable
for relative small projects the SZZ was tested upon (~100
KLOC, 500-1000 checkins), but can be prohibitively expensive
for large systems with tens of millions lines of code and
hundreds of thousands of checkins. In order to make the SZZ
applicable for large software systems we modified it in the
following way:

Decreasing the granularity. We identify bug-introducing
checkins at the level of a source file. The change to the source
file is considered to be bug-introducing if the file was changed
after the release and if that post-release change was a bug fix.

Introducing the Change Risk Index. We define the
change risk index of the checkin c denoted as CRI(c) as the
number of bug-introducing file changes in c.

Figure 2 shows an example of risk calculation for 4 pre-
release checkins that affect 5 source files. Checkin C30 affects
files f4 and f5; CRI(C30)=1 because the file f4 has a post-
release bug fix. Checkin C33 affects only the file f5;
CRI(C33)=0 because there are no post-release bug fixes in f5.
CRI(C36)=2 since 2 out of 4 files affected by C36 have post-
release bug fixes; and CRI(C38)=0 because the only affected
file f1 has no post-release changes at all.

The purpose of the CRI is two-fold. First, CRI serves as a
proxy metric to the amount of work required to fix bugs caused
by c. The high values of CRI for the checkin mean that there
are either multiple small bugs affecting its files or there are few
serious issues which require large fixes.

Second, the CRI is called to improve the accuracy of our
algorithm. Decreasing the granularity makes our algorithm
faster than the original SZZ, but allows for a larger number of
false positives. If the same file was modified twice in the pre-
release timeframe, it is not possible to precisely pinpoint the
actual bug-introducing checkin without thorough analysis of its
code. However, if the bug-introducing checkin changes
multiple source files, the bug fix for it normally affects some
percentage of these files too. In this case the CRI for the bug-
introducing checkin will be higher than the CRI of a correct
check-in that coincidentally involves one of the affected files.
For example the bug-introducing checkin C36 has CRI(C36)=
2, while for the correct checkin C30 CRI(C30)=1. To reduce
the amount of false positives we introduce a lower threshold on
the CRI values for checkins.

Similar to SZZ our algorithm requires discriminating
between types of the checkins (bug fixes vs. new features). We
use the BTD to obtain this information. We retrieve all the
post-release checkins and try matching them with bug records.
The checkin is considered to be a bug fix if the corresponding
bug record exists and is marked as a “bug fix”.

We consider the bug to be related to the checkin if the bug

Legend: new feature bug fix

f2

f3

f4

Pre-release Post release

f5
C33 C36 C38

Figure 2: Risk calculation example

C30

f1

`

record has a reference to the checkin or if the checkin
description contains an ID of the corresponding bug. Since the
checkin description can have numbers other than the bug ID,
we perform additional data cleanup by using heuristics. The
relation is considered to be valid if:

 the bug with such bug ID is present in the BTD and

 the bug was resolved as “Fixed” and

 the checkin was made after the bug record was opened,
but before it was resolved.

V. CHECKIN METRICS

Normally, version control systems collect change data for
the individual source files in the software system. But in our
work we have to define metrics for the individual checkins,
which usually affect multiple files. This necessitates for some
way to aggregate file-level metrics into a checkin level.
Formally, if the checkin c affects n source files f1,…,fn then the
metric M for the c will be an aggregation of values of the
metric M for each individual source files:

 f

In our study we used min(), max(), and avg() aggregation
functions.

The checkin metrics we collect can be divided into
following groups: code metrics, change size, historical code
churn, and organization metrics.

A. Code metrics

Code metrics characterize properties of the components of
the software system that are modified by the checkin. The
underlying intuition is that changes in large and complex
components are more risky. We collect following code metrics
that represent the size of the changed components:

 LOC(c): the total number of code lines in all the files
changed by the checkin c;

 CLASS(c): the total number of classes in all the files
changed by the checkin c;

 FUNC(c): the total number of functions in all the files
changed by the checkin c;

There are other code metrics such as cyclomatic complexity
or dependency metrics. However, those metrics are hard to
compute using only VCS data and are usually highly correlated
with size metrics, thus we exclude them from our study.

B. Change size

The amount of changes introduced by a checkin is a strong
predictor of risk for post-release checkins [3][24]. We apply
this technique to predict risk of pre-release checkins as well.

We denote the amount of changes introduced by the
checkin c (its change size) as Δ c . Depending on the
granularity of changed items (source line, code chunk, source
file) and the type of the changed (is the item added, changed, or
deleted) we have defined total 9 different change metrics. Our
change metrics are compact, expressive, and can be easily
computed solely by using data from the VCS.

Δ_LOC_chg c , Δ_LOC_add c , Δ_LOC_del c) metrics
denote the number of lines of code changed, added, or deleted

by the checkin c correspondingly. Δ_chunk_chg c ,
Δ_chunk_add c , Δ_chunk_del c refer to the number of
changed, added, or deleted code chunks (here code chunk is a
fragment of the program’s code consisting of a few adjacent
lines). Δ_file_chg c , Δ_file_add c , Δ_file_del c change
metrics correspond to the number of source files added,
changed or deleted by the checkin. Δ_file_int(c) is the number
of files in c changed due to code integrations.

C. Historic code churn

It is known [10] that components with large amount of pre-
release changes are prone to post-release failures. We rely on
this observation to define historic code churn metrics.

Conceptually, historic code churn is a summary of change
size metrics collected across previous revisions of source files
affected by the checkin. To compute historic code churn for the
checkin we employ the concept of a “sliding window”. Let us
consider the checkin c that was made on the date t and affects
files f1,…,fn. We want to compute the historic code churn for c
that has occurred within past w days (a sliding window of a
size w), which we denote as Δw(c). We do it in two stages.

First, we compute the historic code churn f for each
file fi ∈ {f1,…,fn} affected by c. We build a set F={fi[k],…,fi[l]}
that contains revisions k,…,l of the file fi that happened within
the time interval [t-w;t). For each revision f ∈ we
compute the code churn f between the revisions f and
f . Then we summarize the amount of changes occurred
in those revisions:

 f f

Second, we compute historic churn for the checkin c by
summing historic churn metrics for all the affected files f1,…,fn

according to (1):

 f

Similarly to the change size, we collect historic churn at the
different levels of granularity (source line, chunk, source file)
and for the different change types (added, changed, and
deleted). We also collect the metric Δw_chekins(c), which
denotes the number of checkins that affected files f1,…,fn. Here
we count only unique checkins; namely, if the same checkin
affected two different files fi and fj, we count this as a single
change towards computing Δw_checkins(c).

D. Organization metrics

Organization metrics proved to be good predictors of the
fault proneness [2]. They represent information about the
developer who made a checkin. However, computing most of
these metrics requires knowledge of the organization hierarchy,
which cannot be directly obtained from the VCS. Thus we
define only a limited set of organizational metrics:

 EXP(c): the experience of the developer d who made
the checkin c. Calculated as the total number of
checkins the d made within the past w days;

`

 NDEV(c): the total number of developers who changed
files f1,…,fn within previous w days. Similarly, we
count only unique developers. If some developer
changed two or more files f1,…,fn we count him as a
single developer towards NDEV(c).

E. Collecting checkin metrics in multi-branch environments

Calculating historic churn and organization metrics for the
checkin c requires collecting a history of previous changes for
each file fi changed by c. So far for the sake of simplicity we
assumed there is only one copy of each source file that contains
a complete history of all its changes. However, if the program
was developed using multiple code branches, the previous
changes to the source file can be scattered across some of these
branches.

We investigated three basic methodologies for collecting
the history of code changes in multi-branch environments,
evaluated their predictive power and implementation
complexity. These methodologies differ in the way how we
build the set F of previous revisions of the source file fi:
collecting F from all the branches in the system, collecting F
only from the trunk branch, or collecting F only from the
branch where the checkin c was made.

1. Collecting historic information from all the branches.

The most comprehensive set of changes is a set F= Fplain
all

of plain checkins that were made across all the branches within
the given time window. Below we describe the approach we
use to build the set Fplain

all.

Suppose we have a ffbY[p] – the p-th revision of the file f
created on the date d in the branch fbY (the superscript denotes
affiliation of the file to the branch). To obtain a set Fplain

all of
previous revisions that occurred across all the branches in the
timeframe [t-w; t) we define two sets Fplain

trunk
 and Fplain

fb:

Fplain
trunk ={fT[i],…,fT[j]} contains revisions i,…, of the file f

in the trunk such that:

 {fT[i],…,fT[j]} are plain checkins;

 {fT[i],…,fT[j]} occurred within the time window [t-w;t).

Fplain
fb

 = {ffb1[k],…,ffbX[l]} contains all revisions of the f in
all the feature branches fb ,…,fbX such that:

 {ffb1[k],…,ffbX[l]} were integrated into the trunk;

 {ffb1[k],…,ffbX[l]} are plain checkins;

 {ffb1[k],…,ffbX[l]} occurred within the time window [t-
w;t).

Finally, we define the set Fplain
all = Fplain

trunk ∪ Fplain
fb.

For an example, consider a situation depicted at the Figure
1. Suppose we would like to build a set Fplain

all for the change
associated with the checkin C51 (in this example we specify
file revision by the number of the checkin). Then the set
Fplain

trunk = {fT[C45]} consists from a single file revision.
Correspondingly, the set Fplain

fb = {ffb1[C32], ffb1[C36],
ffb1[C38], ffb2[C30], ffb2[C33], f fb2 [C35], f fb2[C37]}. Here the
number of checkins in feature branches |Fplain

fb
| is much greater

than |Fplain
trunk| because the number of plain checkins in the

trunk is normally small in comparison to feature branches.

The approach described above allows collecting the most
comprehensive set of historic changes for a file, but its
practical implementation might be complex. In particular, it
requires finding integration sources for the checkins in the
trunk (this information can be either provided by the VCS itself
or can be mined using the algorithm [4]).

2. Collecting historic information from the trunk.

A simpler solution is collecting all the checkins in the trunk
branch, which, essentially, represent a cumulative set of
changes in feature branches. Namely, we can define the set
F=Fall

trunk={fT[i],…,fT[j]}, where {fT[i],…,fT[j]} are all checkins
(including code integrations) that occurred in the trunk during
the time window [d-w;d). In our example the set Fall

trunk for
the checkin C51 is Fall

trunk ={fT[C43], fT[C44], fT[C45]}.

Collecting history of checkins from the trunk is simpler and
faster as it requires analyzing only a single branch.
Unfortunately, a plain checkin and its integration into the trunk
are usually performed by different developers. Collecting
history of changes from the trunk will result in loss of
information about the developer who made the actual checkin.
As a result, organization metrics will become less informative.

3. Collecting historic information from the feature branch
where the checkin was made.

Another solution would be collecting a set F=Fplain
fb

 =
{ffb[k],…,ffb[l]} of plain checkins only across the feature branch
where the checkin c was made. We collect only plain checkins
since some of the file changes may be forward integrations
from the trunk.

The set Fplain
fb

 does not include changes made to the file f in
other branches. However, it may contain information which is
more relevant to the checkin c because Fplain

fb
 was collected in

the same branch as the checkin itself. In our example for the
checkin C51 the set Fplain

fb
 ={ffb1[C32], ffb1[C36], ffb1[C38]}.

Considering three different approaches to defining the set F
of historic changes, an important research question arises:
which approach is the best one? Namely, which of the sets
Fplain

all
, Fall

trunk, Fplain
fb

 will produce metrics that allow
predicting of risky checkins with the highest accuracy? We
answer this question while experimenting with our risk model.

VI. MODEL BUILDING

As a part of our work on the risk prediction model we had
to answer following research questions:

Q1: Which metrics are the best predictors of risk for the
pre-release checkins?

Q2: How historic data must be collected across multiple
code branches? In particular, should we collect this data across
all the branches, in the trunk branch only, or in the branch
where the checkin was made?

A. Model definition

Risk prediction can be seen as a binary classification
problem, where each checkin must be classified as non-risky or
risky. More formally, for each checkin the model accepts the
vector of metrics (predictor variables) and produces the

`

TABLE I. COMPARISON OF DIFFERENT GROUPS OF METRICS

Metrics group
Logistic regression C4.5 tree

μ(AUC) σ(AUC) μ(AUC) σ(AUC)

Change size 0.914 0.0094 0.931 0.0058

Historic churn
(across all branches)

0.880 0.0049 0.861 0.0167

Code 0.862 0.0062 0.833 0.0277

Organization 0.764 0.0105 0.717 0.0102

Full model (all metrics) 0.934 0.0050 0.952 0.0045

response y – a scalar variable which can be translated into a
corresponding class label (“risky” or “non-risky”).

Binary classifiers are usually built using some statistical
modeling technique, e.g. a decision tree, a logistic regression,
or a Support Vector Machine. Such statistical model must be
trained using the existing data – a training set, which contains a
number of < ,y> tuples. For the purposes of training, the
response variable y should take values from the set {0,1},
which corresponds to “non-risky” vs. “risky” class labels.

Once the model is trained, it can predict risk for checkins.
However, as any non-ideal model can make prediction errors,
there are four possible outcomes of classification:

 True Positive (TP): the checkin is risky and was
classified as risky;

 False Positive (FP): the checkin is not risky, but was
classified as risky;

 True Negative (TN): the checkin is not risky and was
classified as not risky;

 False Negative (FN): the checkin is risky, but was
classified as not risky.

Based on these outcomes, a number of metrics to measure
classification performance have been developed [6], including:

A good classifier must have a high precision and recall, and
low false positive rate.

Measuring prediction accuracy is simple if the classifier
outputs class labels directly. However, most classifiers output
response y as a scalar number, which represents a degree of
belief that the checkin is risky. In order to translate y into the
binary class label, some threshold must be used. Namely, the
checkin is considered risky if the output of the classifier is
higher than the threshold and as non-risky otherwise.

Obviously, the outcome of the classification will depend on
the value of the threshold. To measure the change of the
classifier’s performance depending on the threshold, a number
of techniques have been developed, including Precision-Recall
graphs and Receiver Operating Characteristic (ROC).

A ROC graph [6] is a two-dimensional graph, where TPR
(recall) is plotted on the Y axis and FPR is plotted on the X
axis. The ROC curve for an ideal classifier is a straight line
from (0,1) to (1,1), while the line from (0,0) to (1,1) implies a
worst possible classifier that is equal to a random guessing.
The area under ROC curve (AUC) can serve as a single
number to measure classifier’s performance. It can vary from
0.5 for the worst possible classifier to 1.0 for the ideal one.

B. Model building

To train the model and verify its accuracy we used data
from the previous version of Microsoft Windows Phone 7
(WP7) system – a mobile OS developed by Microsoft. WP7 is

a large system composed of tens of millions lines of code.
Development of WP7 was parallelized across several branches.

We scanned all the WP7 code branches and collected data
on all the plain pre-release checkins made between April 1,
2009 and September 1, 2010. This constitute last 17 months of
Windows Phone 7 development. These pre-release checkins
formed the training set for our model. For each of these
checkins we collected code metrics, which formed the vector ,
and calculated the risk index (CRI). To calculate the CRI we
used data on bug fixes made between September 9, 2010 and
January 1, 2012. For the purposes of the model training, we
considered checkins with the CRI>2 as risky (y =1).
Collecting training data using a simplified modification of SZZ
took 4-6 hours on the computer equipped with 2.4 GHz quad-
core Xeon CPU and required about 5 GB RAM.

We built the model using two different statistical methods:
a logistic regression [7] and a C4.5 classification tree [6]. To
measure the accuracy of these models, we relied on the 10-fold
cross-validation [6]. For each fold, we have built the model and
calculated its area under the ROC curve (AUC). Then results
were averaged across all the folds, so the mean μ(AUC) and the
standard deviation σ AUC of the AUC could be computed. We
used this approach to answer questions Q1-Q2:

Q1: Which metrics are the best predictors of risk for
pre-release checkins?

To answer this question we have built a number of models.
Each model was built using different groups of checkin metrics
described in the Section V. These metrics were collected across
all the branches in the system. To avoid overfitting, we used a
stepwise procedure [7] to select metrics into each model. The
results are presented in the 0Corresponding ROC graphs are
shown at Figure 3.

Experimental results clearly show that our model predicts
risk for code changes with high degree of the accuracy. In
fact, the full model (one that includes all the metric groups) has
the AUC = 0.934 (logistic regression, see Figure 4c) and 0.952
(C4.5 tree). This accuracy is very close to the accuracy of the
ideal classifier (AUC=1.0), which proves the validity of our

approach.

To ensure that differences between various models are
statistically significant, we performed t-tests between the AUC
values of models built with different metric groups (we
compared AUCs of models built using same statistical methods
to avoid bias introduced by different modeling techniques).
The null hypothesis was that the mean AUC obtained with a
certain group of metrics is higher than the mean AUC obtained

`

TABLE II. COMPARISON OF METHODS FOR COLLECTING HISTORIC DATA

Metrics group
Logistic regression C4.5 tree

μ(AUC) σ(AUC) μ(AUC) σ(AUC)

Change history collected across all the branches

Historic churn 0.880 0.0049 0.861 0.0167

Organization 0.764 0.0105 0.717 0.0102

Full model 0.934 0.0050 0.952 0.0045

Change history collected across the trunk branch

Historic churn 0.873 0.0106 0.862 0.0169

Organization 0.672 0.0130 0.637 0.0124

Full model 0.934 0.0065 0.946 0.0074

Change history collected across the branch where the checkin was made

Historic churn 0.830 0.0105 0.811 0.0101

Organization 0.721 0.0128 0.679 0.0122

Full model 0.931 0.0069 0.952 0.0053

with another group of metrics.

Tests have shown that the AUCs for various groups of
metrics are different at the 0.05 confidence level (p=0.007 for
historic code churn vs. code metrics for C4.5 tree and p<0.001
for all other metric pairs).

While comparing different groups of metrics we can clearly
see that change size metrics (see the Section B) outperform all
other metric groups. In fact, the accuracy of the model built
using only change size metrics is just 4% worse than the
accuracy of the full model. This is an important observation,
since change size metrics are also easiest to collect.

The historic churn metrics, which represent the amount of
previous changes across all the source files affected by the
checkin (see the Section C), are the second most significant
predictors of the checkin risk. The code metrics (see the
Section A) are slightly less accurate.

Our subset of the organization metrics (see the Section D)
proved to be far less effective predictor; its AUC varies from
0.717 (the C4.5 tree) to 0.764 (logistic). However, we have
used only a limited set of organization metrics that could be
mined directly from the VCS.

Q2: how historic data should be collected across
multiple code branches?

We propose three different methodologies to collect
historic data for a source file: collecting historic data across all
the branches, collecting historic data in the trunk, and
collecting historic data in the particular branch where the
checkin was made (see the Section E).

Selecting an appropriate data collection methodology is an
important question. These methodologies result in different
values of historic churn and organization metrics, which are
built using data on historic changes. Correspondingly, these
differences can have an impact on the accuracy of the model.
Furthermore, these methodologies vary in their implementation
complexity. In particular, collecting historic data across all the
branches requires tracking all the integrations, which is a

complex and computation-intense operation.

To answer the question Q2 we have built models that use
only historic churn and organization metrics to predict risk of
the checkin. We have built three different groups of models
(see Figure 4):

1. Historic metrics are collected from all the code branches;

2. Historic metrics are collected from the trunk branch;

3. Historic metrics are collected from the branch where the
checkin was made.

TABLE II. compares accuracy of these models. We have
found that the historic churn collected in the trunk branch
allows for a higher accuracy than churn collected in the branch
where the checkin was made (p<0.001 for both logistic
regression and C4.5 tree). This behavior is expected since trunk
contains a cumulative set of all the code changes, while the
feature branch contains only some of them. However, historic
churn collected across all the branches did not show a clear
superiority over the churn collected in the trunk. The AUC of
corresponding classifiers did not differ significantly (p=0.047
for the logistic regression and p=0.522 for the C4.5 tree).
However, the ROC curves demonstrate that the classifier built
using historic churn from the trunk predicts high-risk checkins
slightly more accurately, while classifier built using churn from
all the branches does better job predicting low-risk checkins.
This observation might allow developing a classifier ensemble
that will combine advantages of both classifiers.

On the contrary, the model where organization metrics
were collected across all the branches proved to be more
accurate than the model where organization metrics were
collected in the branch where the checkin was made (p<0.001
for both logistic regression and C4.5 tree). In turn, the latter
model proved to be superior to the model where organization
metrics were collected in the trunk branch (p<0.001 for both
logistic regression and C4.5 tree). This can be explained by the
fact that trunk branch does not provide the information about
the actual developer who implemented the checkin.

As a result, from the point of prediction accuracy historic
code churn should be collected over the trunk branch or across
all the branches, while organization metrics should be

Figure 3: ROC graphs for different groups of metrics

False Positive Rate

T
ru

e
P

o
si

ti
v
e

R
at

e

`

a) Historic churn metrics b) organization metrics c) all metrics (the full model)

b) Figure 4: Comparison of method to collect history on the accuracy of the model

collected across all the branches. However, differences in data
collection methodology do not have a strong influence on the
accuracy of the full model. In all cases except one there is no
statistically significant impact of the historic data collection
method on the accuracy of full models (p>0.05).

C. Model deployment

We have deployed a simplified version of our risk model to
predict the risk of Windows Phone 8 code changes. To build
the final model we used LogitBoost regression [8] – a boosted
version of the regular logistic regression. Aside from the
generally higher classification accuracy inherent to the boosted
statistical methods, the advantage of the LogitBoost is an
ability to select the most important predictors automatically.

To reduce the amount of time necessary for metrics
collection, the deployed model incorporates only change size
and code metrics, which do not require collecting history of
code changes:

 Δ_file_chg c : the number of files changed by c;
 Δ_file_add c : the number of files added by c;
 Δ_file_int(c): the number of files integrated by c;
 FUNC(c): the total number of functions in all the files

affected by c;

Due to the insufficient time span between the release of
WP8 and writing this paper we could not verify the accuracy of
the model using WP8 data. 10-fold cross-validation using WP7
data has shown that our simplified model has AUC=0.923,
which approaches the accuracy of the full model.

We have implemented the model as tool called
CheckinMentor. CheckinMentor is as a web application that
monitors and analyzes every checkin coming into the Windows
Phone code base and computes its risk. When the user opens a
CheckinMentor page, he or she can choose a set of checkins to
be displayed using a set of filters. In particular, checkins can be
filtered by their date of change, name of the branch, the
checkin ID, and name of files in the checkins. Once the user
has set up a filter, the CheckinMentor displays a list of
checkins that match that filter along with their metrics and the
predicted risk. The user can sort the resulting list based the date

and time of the checkin, name of the engineer who made the
change, file name, and predicted risk.

If the user clicks on a particular checkin, the
CheckinMentor displays the checkin description and the list of
affected files. For each file it shows the type of the change and
the number of added, deleted, and changed code lines.

VII. THREATS TO VALIDITY

We consider the change as “risky” if it introduces a failure.
Although this is an intrinsically correct approach followed by
all the similar models [3][9][13][24], its side effect is that a
large commit might introduce faulty changes and touch failure-
prone files just by the sheer size only.

This observation, supported by the fact that the size of the
change is the strongest predictor of its risk, gives an impression
of simplicity and inefficacy of the risk model. However, this
impression is wrong. The model also takes into account other
metrics, which increase its accuracy. And most importantly, the
model allows for objective quantification of the risk, which
makes its predictions more actionable and accurate then risk
estimation done by humans.

Nevertheless, this observation points for directions for
improving the model. In particular, the model should not just
quantify the risk of a change, but also identify parts of the
change that are most likely to introduce the failure. Another
improvement might be to account for the testing effort, which
may depend on the size of the change.

To label fixes we used a simplified implementation of the
SZZ algorithm that works on the granularity of a source file.
This dramatically improves the performance of the data
collection, but can potentially increase the number of false
positive cases (a valid checkin is considered to be a bug-
introducing one). This is especially likely if the source file
affected by the change is large.

To account for this we consider checkins, whose CRI is
lower than an empirically chosen threshold, as non-risky.
However, choosing an overly low threshold can increase the
number of false positives, while setting overly high threshold
will lead to increase in false negatives (missing some bug-
introducing changes). A more systematic approach would be

`

executing the original SZZ along with our modification on the
subset of data. The output of SZZ will be considered as a
ground truth and used both to calibrate the threshold imposed
on the CRI and to estimate accuracy of our approach.

Our conclusions regarding the predictive power of
individual groups of checkin metrics are based on the study
which involved only Windows Phone 7 as a test subject. WP7
is a mature product with an established engineering process, so
relative importance of the metrics might be different for other
types of software systems, e.g. open-source projects. This
particularly applies to metrics that take into account branches
in the software system.

VIII. CONCLUSION

In our work we have developed a methodology for
identifying those pre-release code changes that can cause post-
release failures. We paid special attention to ensure a wide
applicability of our approach, so it can be used to predict risk
for the wide range of systems and applications.

We characterized each checkin with a set of metrics and
used a statistical model to predict risk of checkins. To collect
data for building the model we modified SZZ algorithm which
detects bug-introduced changes. Our version of SZZ has higher
performance and could be applied for large systems consisting
of millions LOC and tens of thousands of checkins.

We have demonstrated how effects of code branches can
affect building the risk model. We have shown that risk should
be predicted only for certain types of changes. We
demonstrated how code flow across different branches can
affect data collection and influence the values of certain
checkin metrics, such as historic code churn and organization
metrics. However, our experiments have shown that although
code branching have a significant impact on the predictive
power of these metrics, the change size and properties of the
affected components are the best predictors of the checkin risk.

We verified our approach on Microsoft Windows Phone 7
– a mobile operating system from Microsoft. Our models can
identify risky changes with high degree of the accuracy (area
under ROC curve = 0.93-0.95). The model was deployed as a
part of the Windows Phone 8 engineering process. We will
verify the accuracy of the deployed model once data on
Windows Phone 8 changes will become available.

Our next steps would be applying our technique to develop
risk models for a wider variety of systems, such as Windows,
Office, Bing, and other Microsoft products. Most importantly,
we want to verify if trends we have discovered in Windows
Phone 7 hold for a wide variety of the systems. In particular we
would like to know if the importance of different metrics
groups will change in other software systems. To do this we
will replicate our study across a wider range of software
systems, including open-source projects.

REFERENCES

[1] S. Kim, T. Zimmermann, K. Pan, J. Whitehead, “Automatic

Identification of Bug-Introducing Changes”, Proc. ASE’06, pp.

81-90, 2006

[2] N. Nagappan, B. Murphy, V. Basili, “The influence of

organizational structure on software quality”, Proc. ICSE’08,

pp. 521-530, 2010

[3] A. Tarvo, “Using Statistical Models to Predict Software

Regressions”, Proc. ISSRE’08, pp. 259-264, 2008

[4] A. Tarvo, T. Zimmermann, J. Czerwonka, “An Integration

Resolution Algorithm for Mining Multiple Branches in Version

Control Systems”, Proc. ICSM’11, pp. 402-411, 2011

[5] T. Fawcett, “An Introduction to ROC analysis”, Pattern

Recognition Letters, 26, 2006, pp. 861–874

[6] Hand D.J., Mannila H., Smyth P., “Principles of Data Mining”,

The MIT Press, 2001

[7] Larose D. T., “Data Mining Methods and Models”, Wiley-

Interscience, Hoboken, NJ , 2006

[8] M. Sumner, E. Frank, M. Hall, “Speeding up Logistic Model

Tree Induction”, Proc. ECML-PKDD’05, pp. 675-683, 2005.

[9] A. Mockus, D. Weiss, “Predicting risk of software changes”,

Bell Labs Tech Journal, Vol. 5 no. 2, 2000, pp. 169-180

[10] N. Nagappan, T. Ball, “Use of Relative Code Churn Measures to

Predict System Defect Density”, Proc. ICSE’05, pp. 284-292,

2005

[11] T. Zimmermann, N. Nagappan, “Predicting Defects Using

Network Analysis on Dependency Graphs”, Proc. ICSE’08, pp.

531-540, 2008

[12] C. Bird, N. Nagappan, P. Devanbu, H. Gall, B. Murphy,

“Putting It All Together: Using Socio-technical Networks to

Predict Failures”, Proc. ISSRE’09, pp. 109-119, 2009

[13] S. Kim, E. J. Whitehead, Y. Zhang, “Classifying Software

Changes: Clean or Buggy”, IEEE Transactions on Software

Engineering, Vol. 34 no. 2, 2008, pp. 181-196

[14] N. Nagappan, T. Ball, A. Zeller, “Mining Metrics to Predict

Component Failures”, Proc. ICSE’06, pp. 452-461, 2006

[15] E. Arisholm, L. C. Briand , “Predicting Fault-prone Components

in a Java Legacy System”, Proc. ISESE’06, pp.8-17,2006

[16] J. Munson, T. Khoshgoftaar, “The Detection of Fault-Prone

Programs”, IEEE Transactions on Software Engineering, vol. 18

no. 5, pp. 423-433, 1992

[17] T. Menzies, J. Greenwald, A. Frank, "Data Mining Static Code

Attributes to Learn Defect Predictors", IEEE Transactions on

Software Engineering, vol. 32 no 11, 2007

[18] V. Basili, L. Briand, W. Melo, “A Validation of Object-Oriented

Design Metrics as Quality Indicators”, IEEE Transactions on

Software Engineering, vol. 32 no 11, pp. 751-761, 2007

[19] A. Hassan, “Predicting Faults Using Complexity of Code

Changes”, Proc. ICSE’09, pp. 78-88, 2009

[20] E. Weyuker, T. Ostrand, R. Bell, “Comparing the effectiveness

of several modeling methods for fault prediction”, Empirical

Software Engineering vol. 15 no. 3, pp. 277-295, 2010

[21] S. Kim, T. Zimmermann, E. Whitehead, A. Zeller, “Predicting

Faults from Cacned History”, Proc. ICSE’07, pp. 489-498, 2007

[22] A. Mockus, R. Fielding, J. Herbsleb, “A Case Study of Open

Source Software Development: the Apache Server”, Proc.

ICSE’00, pp. 263-272, 2000

[23] T. Mende, R. Koschke, “Effort-Aware Defect Prediction

Models”, Proc. CSMR’10, pp. 107-116, 2010

[24] E. Shihab, A. Hassan, B. Adams, Z.M. Jiang, “An Industrial

Study on the Risk of Software Changes”, Proc. FSE’2012, pp.

1-11, 2012

