
CanaryAdvisor: a Statistical-Based Tool for Canary Testing

Alexander Tarvo, Peter Sweeney, Nick Mitchell, Vadakkedathu Rajan, Matthew Arnold,
Ioana Baldini
IBM Research

Yorktown Heights, NY, USA

atarvo,pfs,nickm,vtrajan,marnold,ioana@us.ibm.com

ABSTRACT

Canary testing is a novel technique that allows testing com-
plex applications in a real-world environment. However, ca-
nary testing requires collecting and analyzing vast amounts
of data coming from the testing system. Analyzing this data
manually is a laborous task. In this paper we present Ca-
naryAdvisor – a tool to automate canary testing of cloud-
based programs. CanaryAdvisor continuously monitors the
testing system and detects degradations in correctness, per-
formance, and scalability in a new version of the program.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

Keywords

Software testing, performance

1. INTRODUCTION
Microservice architectures are redefining the way that soft-

ware is designed and deployed as a suite of independently
deployable services that communicate through a REST [1]
(HTTP) interface. Traditional enterprise applications have
been designed in three tiers: a front-end client-side user in-
terface, which runs as javascript in a browser, a database,
which stores data, and a server-side application, which han-
dles the HTTP requests, interacts with the database and
generates the content sent to the browser. The server-side
application, which microservice architectures are targeting,
are designed as a monolithic unit; that is, a single logical
executable. That means that even a small change to the
code base requires the whole monolithic unit to be rebuilt,
tested and then redeployed, which happens infrequently be-
cause testing requires a large suite of tests to be run, which
that execute for days and even weeks.

In contrast, microservice architectures breaks the server-
side application up into a suite of loosely coupled microser-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’15 Baltimore, Maryland
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

vices. Each microservice is independently deployed and scaled,
and the loose coupling creates moduar boundaries. In this
new world of a microservice architecture, deploying a new
version of a microservices into a production environment has
simplier testing requirement, because only the microservice
functionality needs to be tested, but requires extra care at
deployment to ensure that the entire service is not brought
down or significantly crippled by the change in the microser-
vice. Canary testing 1 addresses this problem by managing
a microservice’s deployment into a production environment.
canary testing

During a canary test, a new version of an application
(called the “canary”) is deployed alongside the stable run-
ning version (called the “baseline”). Then a small portion
of the user traffic is diverted to the canary. The behavior
of the canary is compared to the behavior of the baseline.
Any unexpected degradation in performance, correctness, or
resource consumption by the canary would result in the test
failure. In this case, all the traffic is re-routed to the baseline
version of the application, and the canary is aborted (that is,
the canary “dies”). Otherwise the canary is considered to be
safe for larger-scale deployment, and replaces the baseline.

Canary testing significantly reduces the risk of introducing
failures into the production version of the software. How-
ever, canary testing poses a unique set of challenges.

First, canary testing requires collecting metrics that pro-
vide complete and accurate picture of application’s correct-
ness and performance. Chosing informative metrics and col-
lecting them without perturbing the system is nontrivial.

Second, the behavior and performance of a complex sys-
tem in the cloud is non-deterministic. Virtualization, ap-
plication co-location, and fluctuations in a workload cause
variations in resource consumption, performance, or even
reliability of the system. These variations, which are not re-
lated to the code change, should not influence the outcome
of the test.

Third, manually determining if a canary should succeed or
fail is difficult, because it requires monitoring a large number
of metrics, detecting significant differences between baseline
and canary, and interpreting the differences.

Fourth, failures and performance degradations must be
detected as quickly as possible, so user requests could be
rerouted back to the baseline version of the software. At
the same time, the test results must be accurate. These are
contradictory requirements, as making an accurate decision

1The name “canary testing” was inspired by using canary
birds in the early days of coal mining to alert miners about
the presence of toxic gases in the air.



in the cloud environment may require significant amount of
data and time.

Canary testing is actively discussed in the industry. How-
ever, it received little attention in academia. In this paper,
we present a CanaryAdvisor – an automated tool for ca-
nary testing of software deployment. CanaryAdvisor works
by continuously monitoring baseline and canary versions of
an application. It collects values from system performance
counters and application logs, and transforms them into
metrics that characterize performance, correctness, and re-
source utilization of the system. CanaryAdvisor compares
values of these metrics collected from the baseline and the
canary and makes the decision on the outcome of this com-
parison.

To withstand short-term variations in metric values, Ca-
naryAdvisor employs a statistical approach. The approach
samples metric values to obtain a distribution, and then
employs hypothesis testing to check if a parameter of the
distribution such as a mean is statistically different between
the baseline and canary. The information on the status test
is displayed to the user in realtime through a web-based UI.

2. USER SCENARIO
To provide a necessary context, consdider a following ex-

ample. Tanya is responsible for a microservice that com-
prises a business critical service that brings in a significant
amount of revenue to her company. Tanya has made new
functionality to her microservice that supports a new ad-
vertisement campaign. Initial unit and system integration
tests have passed, and now Tanya wants to test the microser-
vice with real workload. In particular, she wants to ensure
that neiter 4XX and 5XX HTTP error codes, nor response
time increase. So Tanya deploys the new version of the mi-
croservice on a Linux virtual machine in her datacenter, and
passes information about this deployment to the CanaryAd-
visor. Then she routes a portion of the traffic to the new
version (canary).

The CanaryAdvisor continuously analyzes streams of data
coming from the baseline and the canary versions of the mi-
corservice. The input metrics has some amount of variance,
so initially the CanaryAdvisor does not have enough infor-
mation to ensure if any changes it observed are statistically
significant. As the CanaryAdvisor receives more data, it de-
tects that the percentage of errors in the HTTP log of the
canary did not change compared to the baseline, and CPU
utilization even decreased. However, the response time has
high variance, so the CanaryAdvisor needs more data to
make an informed decision. Thus Tanya lets the canary to
run further.

After receiving more data the CanaryAdvisor detects a
statistically significant increase in the response time of the
canary version. Tanya immediately re-routes all the traffic
back to the baseline version and uninstalls the canary.

After some investigation she founds a performance regres-
sion caused by inefficient use of locking. She fixes the per-
formance regression and starts another canary test. This
time the canary passes and becomes the new baseline by go-
ing into full production replacing the old baseline. Future
canary tests will be against this new baseline.

3. TOOL ARCHITECTURE
This is a solution that solves Tanya’s needs. From this

example we see that canary testing is an open-ended ac-
tivity, where test results must be analyzed and updated
continuously. This naturally leads to the approach based
on stream processing. Here CanaryAdvisor constantly pro-
cesses streams of data from the applications and updates
the decision. This involves the following stages: data collec-
tion, data pre-processing, metric comparison, decision mak-
ing, and visualization. From the implementation standpoint,
each stage is performed by the corresponding component of
the CanaryAdvisor (see Figure 1).

Data collection. Data collection occurs directly on the
computers that perform the test. The collection agents read
the performance counters and application logs, do initial pre-
processing (e.g. parsing HTTP logs), and send data to the
next component of the testing tool. This approach is simple
and lightweight, as it does not require instrumenting the
software system under the test.

Data pre-processing. Raw data obtained with collec-
tion agents usually has an inappropriate format and thus are
hard to analyze. During the data pre-processing stage data
undergo series of transformations which convert it into the
informative and actionable streams of metrics. We define
the following metrics:

• RT = rt1, ..., rtN , where rti denotes the response time
of i-th request. Here N is the total number of requests
served;

• ERR = err1, ..., errN , where erri = 0 if i-th request
was served successfully and erri = 1 otherwise.

• SAT = sat1, ..., satN , where sati = 1 if rti ≤ T ∧
erri = 0 and sati = 0 otherwise. Represent user satis-
faction over the request i. The request is considered to
satisfy the user (sati = 1) if it was processed without
error and with response time no more than T .

• RCcpu, RCdisk, RCnet: represent the consumption of
CPU, disk, and network by the application. Computed
as the amount of resource, e.g. CPU time, consumed
during the [t; t+∆t] time interval and divided by the
number of requests served during the [t; t +∆t]. This
makes our metric invulnerable to changes in workload.

Metrics samples are annotated with the tag that denotes if
they were obtained from the canary (e.g. RT can) or from
the baseline (e.g. RT base) version of the program.

Metric comparison. During this stage CanaryAdvisor
detects any significant difference between metrics received
from the baseline and canary versions of the program.

To account for the inherent variance in the metric mea-
surements we employ a statistical approach. We assume
that each metric M follows some (unknown) distribution,
which can be quantitatively described using some statis-
tic S(M). We use mean µ(RT ) and µ(RC) as statistics
for RT and RC metrics; proportion of erroneous requests
p(ERR) = (

∑
erri)/N and proportion of satisfied requests

p(SAT ) = (
∑

sati)/N as statistics for the ERR and SAT
metrics.

Let Mbase and Mcan are versions of metric M obtained
from baseline and canary versions of a program respectively.
Now a significant difference ∆S(M) = |S(Mbase)−S(Mcan)|
between statistics S(Mbase) and S(Mcan) warns of a change
in the behavior of the canary.



Figure 1: CanaryAdvisor architecture

However, true distributions for metrics Mbase and Mcan

are not known. We have only samples of metrics collected
from baseline and canary versions of the program. As a re-
sult, exact values of S(Mbase), S(Mcan), and, correspond-
ingly, ∆S(M) cannot be computed.

Instead, the difference between means and proportions of
two samples can be computed using a sampling distribu-
tion technique, as described in []. Namely, for significantly
large samples (N ≥ 30) the true difference ∆S(M) is lo-
cated within a confidence interval ci(∆S(M)) = (cilo, cihi)
with some pre-defined probability p. We claim that statistic
S(Mcan) has increased significantly compared to the base-
line Mbase if the lower bound cilo of that confidence in-
terval is higher than 0 (namely cilo > 0). Correspodingly,
S(Mcan) has decreased if cihi < 0; S(Mcan) didn’t change
significantly if 0 ∈ (cilo, cihi).

To make this approach practical, we need to solve two
problems. First, subtle differences in underlying hardware,
OS, or presense of long-running tasks co-located with canary
or baseline versions of the program may introduce a small
bias in metric measurements. To ensure that our approach
is resilient to such bias we introduce a tolerance factor x.
Change in metrics is considered significant only if cilo > x
or cihi < x.

Second, in order to obtain accurate results for the test we
must ensure that the widthW = cihi−cilo of the ci(∆S(M))
is small enough.

The width W represents the possible error in estimating
the true difference ∆S(M). Unless cilo > x or cihi < −1∗x,
which indicate a significant difference between the canary
and the baseline, we compare the width of the interval W to
a pre-defined critical value Wcrit. If W > Wcrit we attempt
to decrease width W .

W is directly proportional to the sample variance and in-
versely proportional to the sample size N . The sample vari-
ance depends on factors that are beyond our control: effects
of caching, fluctuations in the workload, presense of short-
term tasks co-located with the program, etc. Thus the only
way to decrease W is to collect more data before making
any decision on metric M .

The algorithm for comparing canary to the baseline is
outlined at the Figure 1

Decision making. During this stage CanaryAdvisor an-
alyzes comparison results for all the metrics and decides on
the outcome of the test.

Different metrics have different semantics and different
importance. To allow flexibility in making a decision we de-
fine two boolean parameters for each metricMj : higher is better

and important .

Algorithm 1 Algorithm for comparing canary and baseline

if W > Wcrit then

if not ((cilo > x) or (cihi < −1 · x)) then

more data required
end if

end if

if cilo > x then

S(M) has increased for the canary
else if cihi < −1 · x then

S(M) has decreased for the canary
else

S(M) remained the same
end if

If higher is better = true for Mj , then a decrease in S(Mj)
results in labeling Mj as being in a “worse” state. Similarly,
the increase in S(Mj) results in labeling Mj as being in a
“better” state. higher is better is set to true for the SAT
metric and false for the remaining metrics.

Metrics with important=true are considered to be more
important for the outcome of the test than remaining met-
rics. For example, ERR metric can be considered as an
important one.

This leads to the following rules to determine the test
outcome:

• Pass. All the metrics are in the “better” or “same”
state;

• Fail. At least one important metric is in the “worse”
state;

• Some problems. At least one non-important metric is
in the “worse” state. No important metric is in the
“worse” state;

• Inconclusive. Some metrics are in the“need more data”
state. No metric is in the “worse” state.

Visualization CanaryAdvisor displays the current state
of the test through a web-based UI. It displays the state of
the test, and the state of each individual metric. In addi-
tion, for each metric Mj the UI displays the change in the
statistics S(Mj), as well the histogram of the metric values.

4. DISCUSSION AND LESSONS LEARNED
Discussion and lessons learned

5. RELATED WORK
Canary testing is gaining



6. CONCLUSION
conclusion

7. REFERENCES
[1] R. T. Fielding and R. N. Taylor. Principled design of

the modern web architecture. ACM Trans. Internet

Technol., 2(2):115–150, May 2002.



APPENDIX

This section contains a detailed set of demo steps and ex-
pected outputs of our tool.

A. DEMO STEPS
In this demo we will simulate three canary tests in a cloud

environment. We will use a Daytrader application as our
test subject. Daytrader is a Java application that simulates
a stock trading platform. It offers a set of REST APIs for
various actions, such as user logon, reviewing the portfolio,
purchasing and selling securities.

Step 1: Start two versions of Daytrader on two Linux vir-
tual machines via a shell script:

• “baseline”: Daytrader instance with no changes in
it. Imitates a baseline version of the application;

• “canary”: Daytrader instance with an injected cor-
rectness and performance faults. Calling two of
the program’s REST APIs will results in generat-
ing an internal server error (HTTP 500 response
code) with the probability of 20%. Response time
for two of its REST APIs is increased by 30%;

Step 2: Start an instance of CanaryAdvisor (CA) using the
Web interface. Open the UI of the CanaryAdvisor (see
Figure 2 for an output example).

• Open the CanaryAdvisor UI page. Demonstrate
that CA is in the “Inconclusive” state, as it lacks
data to make decision about most of the metrics.
Show the list of metrics grouped by the metric type:
RT , SAT , and ERR metrics for each REST API
entry of the Daytrader andRC metrics. Emphasize
that CA also estimates the amount of time when
the decision will be available;

• Query the output of the CanaryAdvisorService through
its REST API. Demonstrate the list of metrics.
Emphasize that although most of the metrics need
more data to make a decision, the basic descriptive
statistics, such as mean and variance, is available
for each metric.

Step 3: Wait for 1-2 minutes. The CA will now enter the
“Fail” state. It reports increased response time for some
of the DayTrader REST APIs and increase in error per-
centage for other APIs.

• Click on the “Worse” button at the top. A list of
metrcics in the “worse” state will be shown (see
Figure 3);

• Click on one of the metrics. A window with a his-
togram for “baseline”and“canary”versions will ap-
pear. Note that the distribution of metric values is
obviously different for canary and baseline versions.

Step 4: Stop the “canary” version of Daytrader using the
shell script. Assume that discovered bugs were fixed.
Re-deploy the “canary” version of Daytrader. Now this
will be the version of the Daytrader without any changes,
fully identical to the “baseline”.

Step 5: Start an CA instance again.

• Open the CanaryAdvisor UI page again. Demon-
strate that CA is again in the “Inconclusive” state.
However, the time until decision is smaller than in
the previous case;

Figure 2: Not enough data to decide on test

Figure 3: Canary test failed

• Query the output of the CanaryAdvisorService through
its REST API. Demonstrate that for all the met-
rics, CanaryAdvisorService do not have much data
about the canary version. However, it retrieved a
large sample for the baseline version from the Elas-
ticSearch database, which somewhat reduces time
to decision.

Step 6: Wait for a few minutes. More and more metrics in
the CA output will be transitioning from“Inconclusive”
to “Unchanged” state.

• Click on one of the metrics in the “Unchanged”
state. A window with a histogram for “baseline”
and “canary” versions will appear. Note that the
distributions of metric values is practically same
for both these versions.

• Eventually the CA will enter into a “Pass” state
(see Figure 4.



Figure 4: Canary test passed


