
focus

�	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

min ing s o f t war e ar c h ive s

Mining Software History
to Improve Software
Maintenance Quality:
A Case Study

Alexander Tarvo, Microsoft

Errors in software
updates can cause
regressions—failures
in stable parts of the
system. The Binary
Change Tracer collects
data on software
projects and helps
predict regressions
in software projects.

S
oftware maintenance includes correcting discovered faults, adapting the sys-
tem to changes in the environment, and improving the system’s reliability
and performance.1 These activities result in system modifications that are dis-
tributed to customers as updates. Microsoft Windows is no exception to this

process. After Microsoft releases a new version of Windows, the Windows Serviceability
team makes post-release changes (fixes) to the system. However, any incorrect changes
will cause software regressions—failures in already stable features and parts of the system.
Regressions are exceptionally painful for cus-
tomers: imagine what will happen if your com-
puter suddenly stops working after you install an
update.

The best method to avoid regressions’ nega-
tive consequences is extensive testing of all fixes.
However, because of the large user base and the
growing number of Windows versions we must
support, this method results in a constantly in-
creasing amount of testing for the fixes. This re-
quires us to distribute our limited resources in
the most efficient way: we must detect the riskiest
software updates and concentrate on testing them.
This will let us detect and fix possible regressions
early, before releasing the updates to customers.
So, we need a tool or a method that can predict
the amount of risk for each fix.

To meet this need, I developed the Binary
Change Tracer (BCT). BCT extracts information
on all changes that have happened to Microsoft

Windows. Data mined with this tool let us build
a statistical model that predicts each fix’s risk of
regression. This approach exploits features of a
standard engineering process, so it can used for a
variety of software projects.

Risk Prediction
in Software Projects
Considerable research exists on risk prediction in
software projects. In particular, researchers have
concentrated on fault proneness prediction (FPP)
models.2–4 These models tend to predict which
parts of the newly developed software system will
be most prone to failures. According to FPP mod-
els, a system consists of components described by
metrics (numeric properties) such as code complex-
ity or the number of prerelease changes. Some sta-
tistical model, such as a decision tree2 or logistic
regression,3 uses these metrics to predict the com-
ponents’ fault proneness. Initially, you train the

	 January/February 2009 I E E E S o f t w a r e � �

statistical model on data about a similar software
system for which you know the components’ met-
rics and fault proneness (which components have
failed). Once you’ve trained the model, you can use
it to predict the new system’s fault proneness.

Unfortunately, FPP models aren’t designed to
predict the risk for a particular software update.
Nevertheless, you can build a model to predict soft-
ware regressions that works similarly to FPP mod-
els: a set of metrics will describe each code change.
On the basis of these metrics, some statistical
method will predict each change’s regression risk
(see Figure 1).

Predicting software regressions is a much less
explored area; very few research papers address
this topic.5,6 This lack of research might be due
to the difficulties of mining data on fixes. To be
trained, a statistical model requires detailed infor-
mation on hundreds of prior fixes. Unfortunately,
such information is scattered throughout multiple
data sources: version control systems (VCSs), bug-
tracking databases (BTDs), mailing lists, and even
the program’s source code. When the data is in
these discrete sources, it’s hardly accessible and so
is of little value. To be useful, we must extract it,
clean it, and convert it into an appropriate format.
So, to build a regression prediction model, we need
to develop a special program called a mining tool
that performs these tasks.

Researchers have recently discussed several de-
signs for mining tools. Usually, this has occurred
in the context of some concrete problem, such as
discovering fix-introducing changes,6 helping new
programmers understand a large project,7 or dis-
covering patterns in a project’s history.8 Instead of
developing a specialized tool just for extracting fix
metrics, we created a more flexible tool that we can
use for other purposes—BCT.

Evolution of a Software System
When any change in Windows is necessary, a pro-
gram manager, test engineer, or support special-
ist creates a bug record in the BTD. Each bug re-
cord has a unique identifier (bug ID) and contains
fields describing the change: its type (whether it’s
a bug fix or new functionality), the date the re-
cord was created, and other information. If the
bug is a fix for a regression, the record includes a
reference to the bug that caused the regression.

Once initial analysis of the bug is done, a devel-
oper downloads the current version of the source
code from the VCS and makes the change. The VCS
stores a complete history of changes to the product’s
code at the source file level. When a developer adds
a new file to the VCS, the file’s version is set to 1.

Each time the file changes, its version number in-
creases by one.

After the developer implements a change and
the change passes some basic functionality testing,
he or she integrates the changed source files back
into the VCS. The integration takes the form of an
atomic transaction, or check-in. Each check-in has
a unique number (check-in ID) and contains a list of
changed source files, developer comments (descrip-
tion), the change’s date, and the developer’s name.

Once the fix’s development is complete, the test
engineer must test the change. On the basis of the
information about the change and the test engi-
neer’s knowledge of the system, he or she estimates
the necessary testing for that fix—that is, which
tests to run and what level of testing is required.
Many factors influence the amount of testing, but
the most obvious is the regression risk: the higher
the risk, the more thorough the testing should be.

If testing reveals any problems with the change,
the test engineer asks the developer to fix them.
Otherwise, the test engineer marks the bug record

History of the old software system: used to train the model

Fix Metric 1 Metric 2 Metric N Bug caused regression?

14356 15 5 1 1 (Yes)
15875 1 1 1 0 (No)
… … … … …
45674 12 3

…

…
…
…
… 0 1 (Yes)

Fix ID* Metric 1 Metric 2 Metric 3

127961 32 563 1

Model training
On the basis of the training

set, we locate the
most important metrics

and train the model.

Information on fixes
and their metrics

Trained model*

New software system for which we need to predict risk

Training the model
using data on the
existing system

Applying the trained model to
predict risk in a new product

Information on fixes and their metrics

Training set*
For each bug,
we define its
metrics and
determine
whether it
caused a

regression.

Risk is
high! We
need to
test it

thoroughly!

*All numbers shown in this figure are sample values and do not reflect any
 engineering process used by Microsoft.

Information on which fixes
caused regressions

e c0 + c1•x1 + c2•x2 + c3•x3y =
1 + e c0 + c1•x1 + c2•x2 + c3•x3

Trained model*
(predicts risk for a new fix)

e c0 + 32•c1 + 563•c2 + 1•c3y = = 0.985
1 + e c0 + 32•c1 + 563•c2 + 1•c3

Figure 1. Building the
regression prediction
model. The model is
trained using the known
data and then used
to predict risk for
a new fix.

�	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

“closed,” and a software update can be built. This
update is a set of new binary modules (binaries)
whose code was changed owing to the fix. These
binaries are “wrapped” into a package and sent to
the customer.

So, by looking at the software system and the
history of its changes, we find several different en-
tities: bug records, developers, check-ins, source
files, functions, and binaries. These entities are
related. For example, each check-in consists of
source files, and each source file can be divided
into source functions. Each entity is uniquely
identified by its ID and described by its metrics.
For example, a source file can be identified by the
combination of its name and version number and
is characterized by size, complexity, and the num-
ber of prerelease changes. BCT’s goal is to identify
these entities, retrieve their metrics, and restore
the relations between them.

Mining Information
about the Software System
While analyzing the system, BCT uses a decompo-
sition of the system into binary modules. The tool
analyzes them one by one, accumulating the results
until it has retrieved a complete history of changes
in the system’s source code. For each binary, BCT
collects information on changes that occurred only
during a certain time interval. This interval can
be of an arbitrary length and is specified by time
stamps that the user passes to the tool. Finally, BCT

collects information on all changes in the system
that occurred during the specified time interval.

Analysis of a binary takes four steps:

	 1.	Dividing the binary into components.
	 2.	Extracting the history of code changes.
	 3.	Associating code changes with bugs.
	 4.	Storing the extracted data.

Each step uses information obtained during the
previous one, so the steps execute in strict order.

Dividing the Binary into Components
When the compiler builds the software system,
in addition to binaries, it generates symbol files.
These files let us determine which chunk of a bi-
nary corresponds to a particular line in the source
file. BCT uses this information to retrieve a com-
plete list of the names of the source files used to
build old and new versions of the binary. Given
these names, the tool locates corresponding
source files in the VCS and, by knowing when the
binary was built, accurately determines exact ver-
sions of these source files.

Next, BCT obtains the text of these source files
from the VCS (see Figure 2). The tool processes
each source file with a parser that locates all func-
tions in the file and then reports each function’s
source code and signature.

Eventually, BCT restores componentization
of the software system. It divides the binary logi-

C++

main.

C++

window

\calc\util\util.c#2
\calc\util\window.c#1
...
\calc\prog\main.c#1

Old file list

Old file list

Version
control
system

Retrieve text of
source files,
used to build
the binary.

Old file listParse source
files.

Get function’s
signatures and
source code.

Retrieve list of
source files,
used to build
the binary.

Old binary:
 calc.exe
 v.4.1.3960.4258
 15 May 2004

New binary:
 calc.exe
 v.4.1.3960.5214
 23 Oct. 2006

C++

util.cpp

C++

main.

C++

window

C++

util.cpp

\calc\util\util.c#4
\calc\util\window.c#2
...
\calc\prog\main.c#1

New file list

void foo(...) {...}
int moo(...) {...}
...
int bar(...) {...}

Old function list

void foo(...) {...}
int moo(...) {...}
...
int bar(...) {...}

New function list

Figure 2. Dividing the
binary into components.
The further analysis
will be carried out in the
context of these smaller
components.

	 January/February 2009 I E E E S o f t w a r e � �

cally into source files and divides the source files
into functions (or methods, if the program has been
developed using an object-oriented methodology).
BCT stores each component in one of the internal
lists. The old file list contains all the source files for
building the binary’s old version, and the new file
list contains the source files for building the new
version. Correspondingly, BCT stores functions in
the old functions list and new functions list. Each
function contains a link to its source file, and each
source file has a list of its functions.

Extracting the History of Code Changes
For each source file of the binary, BCT retrieves all
the versions newer than that source file’s oldest ver-
sion (used to build the old version of the binary)
but older than or the same age as the source file’s
newest version (used to build a new version of the
binary). Then, the tool performs a pairwise com-
parison of these versions in ascending order. That
is, it compares the oldest version of the source file
with the next one and so on, until it reaches the
newest version (see Figure 3).

BCT compares each source-file pair at the func-
tion level. It parses the source code of each of the
file’s two versions (older and newer) and retrieves
their lists of functions. For each function in the
newer version, BCT tries to locate a function with
the same signature in the older version. If it can’t
find a match, it considers the function to have been

added (it’s in the newer version of the file but not
the older one) or deleted (it’s in only the older ver-
sion). If it finds the corresponding function in the
older version of the source file, it compares the
function’s source code with that of the newer ver-
sion. If the source code doesn’t match, BCT con-
siders the function changed.

BCT adds these changes to the dictionary of
atomic changes that happened to the binary. This
dictionary’s keys are the changed functions’ signa-
tures, and its values are the lists of check-ins that
caused these changes. The resulting dictionary
contains all the changes that happened to all the
functions between the old and new versions of the
binary. Because every function has a link to the
source file, the history of source file changes is re-
trieved automatically.

Associating Code Changes with Bugs
The VCS tells us what has been changed and when,
but it doesn’t say why; such information is in the
BTD. To retrieve this information, we must relate
the code changes (check-ins) in the VCS to the cor-
responding bug records in the BTD. Usually ei-
ther the check-in or the bug record has a link to its
counterpart.

Regarding the VCS, developers can put IDs of
check-ins associated with a bug in the bug record’s
special field. BCT creates a list of check-in IDs and
scans the BTD to find all bug records pointing to

Calendar time

util.c, ver. 2,
check-in #1432,

28 Dec. 2003

util.c, ver. 3,
check-in #1528,

18 Feb. 2005

util.c, ver. 4,
check-in #1774,

14 Jul. 2006

util.c, ver. 5,
check-in #1952,

5 May 2007

Jan. 2004 Jan. 2005 Jan. 2006 Jan 2007

Comparison 1. Functions changed:
void foo(int a, int b)
int bar(char* pszString)

Comparison 2. Functions changed:
void foo(int a, int b)
int moo(void* pStruct)

Old binary:
 calc.exe
 v.4.1.3960.4258
 Built on 15 May 2004

New binary:
 calc.exe
 v.4.1.3960.5214
 Built on 23 Oct. 2006

Changes in file util.c

Dictionary of atomic changes

Key: function signature Value: list of changes

int bar(char* pszString)
void foo(int a, int b)

check-in 1528
check-in 1528
check-in 1774

int moo(void* pStruct) check-in 1774

Newer
version

Older
version

Newer
version

Older
version

Figure 3. Extracting the
history of code changes.
For each source file,
BCT scans the history
of its changes and
retrieves a list of
changed functions.

�	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

these check-ins. This is the most reliable way to
link check-ins with bugs, but these check-in IDs
aren’t always present in the BTD.

Regarding the BTD, developers can also leave
numeric IDs of corresponding bug records in the
check-in description field. Unfortunately, analy-
sis of this field is more difficult for the tool. The
check-in description is just a text field, and any
number in it could be considered an ID of the cor-
responding bug. So, BCT retrieves all numbers
from the check-in description. If the BTD contains
bugs with such IDs, the tool considers them related
to the check-in. To remove all incorrect matches,
BCT analyzes the closure dates of all bugs linked
to the check-in. Normally, the test engineer should
close a bug shortly after the developer registered
the corresponding check-in in the VCS. Otherwise,
BCT discards that relation between the bug record
and the check-in.

This approach is similar to one that Jacek Sli-
werski, Thomas Zimmerman, and Andreas Zeller
developed;6 however, our approach doesn’t perform
lexical analysis of check-in descriptions. Neverthe-
less, the combination of both data sources (the VCS
and BTD) lets BCT accurately detect correspond-
ing check-ins for the vast majority of bug records.

Storing the Extracted Data
This final step is straightforward: BCT stores all
mined entities (bugs, check-ins, developers, bina-
ries, source files, and functions), their metrics, and
their links in the SQL database.

BCT itself doesn’t mine all code metrics for
changed functions and binaries. To extract met-
rics such as code complexity, coupling, and ob-
ject-oriented metrics, we use the MaX framework,
another tool developed at Microsoft.9 Thanks to
BCT’s relational model, it easily incorporates in-
formation retrieved by MaX. For example, to
get code metrics for some function, BCT uses the
function’s signature to query MaX databases. In
this light, you can view BCT as a “metaminer”:
in addition to its own ability to mine the history
of changes, it uses external information sources to
obtain code metrics for changed components. This
feature, as well as the ability to collect data on dif-
ferent levels of a system’s componentization (bi-
naries, source files, and functions), distinguishes
BCT from other tools.7,8

Using BCT
to Predict Software Regressions
To predict a fix’s regression risk, we developed the
Fix Regression Prediction (FRP) model. The FRP
model is based on logistic regression, a statistical

method.10 The model predicts the regression risk ŷ
for a fix on the basis of the fix metrics x1, …, xn and
model coefficients c1, …, cn:

 ̂ ...

...
y

e

e

c c x c x

c c x c x

n n

n n
=

+

+ + +

+ + +

0 1 1

0 1 11

The fix metrics are the metrics of the corre-
sponding bug record and all its related entities:

the number of changes the fix caused (the num-
ber of components it changed),
the experience of the developer who made the
fix (the number of fixes he or she has done dur-
ing the past year),
the code metrics of the binaries, functions, and
source files that the fix affected (their size, their
complexity, and other metrics), and
general fix metrics (whether the change intro-
duced a new functionality, whether the fix was
for a previously discovered regression, and
other similar metrics).

The coefficients’ values are inherent to the
model; they contain that “hidden knowledge” re-
garding which fix metrics are the best indicators of
the possible regression. Coefficients are calculated
by Matlab when we train the model such that, for
any given fix, the predicted regression risk ŷ will be
as close as possible to the real (observed) risk y.

The model ŷ outputs a real number greater than
0 but less than 1; the higher ŷ is, the higher the re-
gression risk. To distinguish between high- and
low-risk fixes, we use a numeric threshold t. If ŷ
exceeds t, the fix is risky (the probability of a regres-
sion is high); if ŷ is less than t, the fix isn’t risky (the
probability of a regression is low).

Measuring Accuracy
The ideal classifier would detect all high-risk fixes
without making mistakes. However, in reality,
some mistakes are unavoidable. Each fix prediction
has four possible outcomes:

True positive. The fix was classified as risky
and caused a regression.
False positive. The fix was classified as risky
but didn’t cause a regression.
True negative. The fix was classified as not
risky and didn’t cause a regression.
False negative. The fix was classified as not
risky but caused a regression.

These outcomes form the basis for several met-
rics for classifier accuracy. Two of the most widely

■

■

■

■

■

■

■

■

To extract
metrics

such as code
complexity,

coupling, and
object-oriented

metrics, we
use the MaX
framework,
another tool
developed at
Microsoft.

	 January/February 2009 I E E E S o f t w a r e � �

used metrics are the true positive rate (TPR) and
false positive rate (FPR):

TPR
number of true positives

number of all fixes th
=

aat caused regression

 FPR
number of false positives

number of all fixes t
=

hhat didn t cause regression'

Both the TPR and FPR have values between 0
and 1. A high-accuracy classifier will have a high
TPR (it detects most high-risk fixes) and a low FPR
(it makes few mistakes).

Obviously, the TPR and FPR values depend
on t. If t is high, the classifier will detect fewer re-
gressions (low TPR) but will make fewer mistakes
(low FPR). Correspondingly, low values of t will re-
sult in high TPR and FPR. So, an indefinite number
of (TPR, FPR) pairs is possible. These pairs form a
graph with TPR values on the y-axis and FPR val-
ues on the x-axis. Such a graph is called a receiver
operating characteristic (ROC) curve.

ROC curves are widely used to estimate classi-
fier performance. The ideal classifier’s ROC curve
would be a straight line from (0, 1) to (1, 1). The
worst classifier’s ROC curve would be a line from
(0, 0) to (1, 1). The area under the ROC curve
(AUC) is a number characterizing the classifier’s
performance. AUC = 1 for the ideal classifier;
AUC = 0.5 for the worst one.

Building the Model
To train the model and estimate its accuracy, we col-
lected data on Windows XP and Server 2003 post-
release fixes made from 2004 through 2006. For
each fix, BCT reported the metrics and determined
whether the fix caused any regressions (see Figure 1).

To measure the model’s accuracy, we used a
data-splitting technique.11 During each split, we
randomly divided the whole data set into a train-
ing set and test set. The training set contained 70
percent of all the fixes; the test set contained the
remaining 30 percent. We performed 50 splits. For
each split, we created an ROC curve and calculated
the AUC. We then averaged the ROC curves to
measure the model’s accuracy.

To determine which metrics best predict risk, we
used a stepwise procedure.10 We started without
any predictors in the model. During the forward
step, we evaluated the available metrics one by one.
We added a metric to the model if it resulted in a
statistically significant improvement of accuracy.
Once we tried all the metrics, we started the back-
ward step. We removed a metric from the model if
its accuracy didn’t significantly deteriorate. We re-

peated this entire procedure until we couldn’t add
or remove any metrics.

We found three metrics to be the best indicators
of regression risk. The first is the number of source
files affected by the fix (p = 0.006). The second is
the summary change in the size of all functions
changed by the fix (p < 0.001). The third is whether
the fix introduced a new functionality (p = 0.025).

The final model’s AUC was 0.71 (see Figure 4),
which is significantly higher than the random draw
(AUC = 0.5).

Deploying BCT at Microsoft
Since the FRP model’s deployment in March 2008,
the Windows Serviceability team has used it to pre-
dict regressions in upcoming Windows fixes.

When the new fix is available, BCT automati-
cally extracts its metrics and passes them to the
FRP model, which calculates the regression risk.
On the basis of this risk, we assign the fix to one of
these categories:

Very high risk. The probability of regression is
approximately X percent.
High risk. The probability of regression is twice
the average.
Average risk. The probability of regression is
about average.
Low risk. The probability of regression is 50
percent of the system’s average probability of
regression.

■

■

■

■

The receiver operating characteristic (ROC)
curve of the ideal classifier

The ROC of the worst possible classifier

The ROC of the FRP model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Figure 4. The Fix
Regression Prediction
(FRP) model’s accuracy.
We use the receiver
operating characteristic
(ROC) as an accuracy
measure.

�	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

Very low risk. The probability of regression is
negligibly low.

Test engineers use this information to plan fix
testing; fixes with high or very high risk should
undergo rigorous testing, whereas fixes with low
or very low risk can undergo reduced testing. The
model has quickly gained popularity. Analysis of
the usage logs shows that more than 70 percent of
the test engineers on the team regularly use it.

To estimate the FRP model’s utility, we com-
pared its results with those from manual estimation
of regression risk. Before deploying the model, the
test engineer analyzed the fix and classified its risk
as high, medium, or low. The results of such man-
ual estimation were available for approximately 30
percent of all fixes in our data set. Tests revealed
that the FRP model has significantly higher accu-
racy than test engineers. So, FRP proved useful for
risk prediction.

We also use BCT to analyze daily builds. The
practice of daily builds supports proper project
management, especially when you’re developing a
large, complex software system.12 However, if you
look at the daily build (which is just a set of bina-
ries), you’ll have trouble finding which bugs were
fixed. To get such information, we use BCT to com-
pare the latest build with a previous one. The result-
ing report contains a complete list of bugs fixed in
the latest build. For each bug, BCT lists the affected
components, related check-ins, and the names of
the persons who made the change.

Program managers have found daily-build re-
ports useful; the reports provide a complete list of
changes in the software project and help the man-
agers track its progress. We’re integrating build re-
ports with the FRP model. We’ll use the model to
predict regression risk for each bug fixed in a build,
which will help leverage testing of the daily builds.

B CT is a multipurpose tool that can mine
vital information on a software system
from structured data sources such as

VCSs, BTDs, and a system’s code. Its distinctive
feature is an explicit representation of the mined

■

data as a set of related entities. Such an approach al-
lows the parallelization of data collection between
multiple machines or CPUs. In addition, it lets us
easily add new types of entities or metrics.

BCT proved a stable, scalable platform for min-
ing data, but we’re constantly improving it. We’re
trying to increase its scalability by reducing the
number of calls to the VCS and BTD. In addition,
we’re taking steps to make it more flexible, so that
any development team can easily adopt it with min-
imal effort. We’re also looking for other uses of in-
formation mined with BCT, such as developing new
statistical models. Finally, we’re working on a BCT
user interface that will let us visualize all processes
occurring in the software system.

We hope that adoption of BCT and statistical
models created with its help will further increase
our organization’s efficiency without decreasing
software updates’ quality.

Acknowledgments
I thank Jacek Czerwonka, John Erickson, Kanika
Nema, and Brendan Murphy for reviewing earlier
drafts of this article. I also thank the reviewers and
guest editors of the special issue for their insightful
comments.

References
	 1.	 IEEE Std. 1219-1998, IEEE Std. for Software Mainte-

nance, IEEE, 1998.
	 2.	 T. Menzies, J. Greenwald, and A. Frank, “Data Mining

Static Code Attributes to Learn Defect Predictors,” IEEE
Trans. Software Eng., vol. 33, no. 1, 2007, pp. 2–13.

	 3.	 N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics
to Predict Component Failures,” Proc. 28th Int’l Conf.
Software Eng. (ICSE 06), IEEE CS Press, 2006, pp.
452–461.

	 4.	 N. Nagappan and T. Ball, “Use of Relative Code Churn
Measures to Predict System Defect Density,” Proc. 27th
Int’l Conf. Software Eng. (ICSE 05), IEEE CS Press,
2005, pp. 284–292.

	 5.	 A. Mockus and D. Weiss, “Predicting Risk of Software
Changes,” Bell Labs Tech J., vol. 5, no. 2, 2000, pp.
169–180.

	 6.	 J. Sliwerski, T. Zimmermann, and A. Zeller, “When
Do Changes Induce Fixes?” Proc. 2nd Int’l Workshop
Mining Software Repositories, ACM Press, 2005, pp.
24–28.

	 7.	 M. Fischer, M. Pinzger, and H. Gall, “Populating a Re-
lease History Database from Version Control and Bug
Tracking Systems,” Proc. Int’l Conf. Software Mainte-
nance (ICSM 03), IEEE CS Press, 2003, pp. 23–32.

	 8.	 D. Ubrani and G.C. Murphy, “Hipikat: Recommending
Pertinent Software Development Artifacts,” Proc. 25th
Int’l Conf. Software Eng. (ICSE 03), IEEE CS Press,
2003, pp. 408–418.

	 9.	 A. Srivastava, J. Thiagarajan, and C. Schertz, Efficient
Integration Testing Using Dependency Analysis, tech.
report MSR-TR-2005-94, Microsoft Research, 2005.

	10.	 D.T. Larose, Data Mining Methods and Models, Wiley-
Interscience, 2006, p. 322.

	11.	 D. Hand, P. Smyth, and H. Mannila, Principles of Data
Mining, MIT Press, 2001, p. 546.

	12.	 S. McConnell, “Daily Build and Smoke Test,” IEEE
Software, vol. 13, no. 4, 1996, pp. 143−144.

About the Author
Alexander Tarvo is a software development engineer in test on Microsoft’s Windows
Serviceability team. He works on developing tools to mine software archives and on sta-
tistical models for predicting risk in software systems. His professional interests include
data mining, machine learning, simulation, and software reliability. Tarvo received his MS
in computer science from Chernigov State Technological University. Contact him at alexta@
microsoft.com.

