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Errors in software 
updates can cause 
regressions—failures 
in stable parts of the 
system. The Binary 
Change Tracer collects 
data on software 
projects and helps 
predict regressions 
in software projects.

S
oftware maintenance includes correcting discovered faults, adapting the sys-
tem to changes in the environment, and improving the system’s reliability 
and performance.1 These activities result in system modifications that are dis-
tributed to customers as updates. Microsoft Windows is no exception to this 

process. After Microsoft releases a new version of Windows, the Windows Serviceability 
team makes post-release changes (fixes) to the system. However, any incorrect changes 
will cause software regressions—failures in already stable features and parts of the system. 
Regressions are exceptionally painful for cus-
tomers: imagine what will happen if your com-
puter suddenly stops working after you install an 
update.

The best method to avoid regressions’ nega-
tive consequences is extensive testing of all fixes. 
However, because of the large user base and the 
growing number of Windows versions we must 
support, this method results in a constantly in-
creasing amount of testing for the fixes. This re-
quires us to distribute our limited resources in 
the most efficient way: we must detect the riskiest 
software updates and concentrate on testing them. 
This will let us detect and fix possible regressions 
early, before releasing the updates to customers. 
So, we need a tool or a method that can predict 
the amount of risk for each fix.

To meet this need, I developed the Binary 
Change Tracer (BCT). BCT extracts information 
on all changes that have happened to Microsoft 

Windows. Data mined with this tool let us build 
a statistical model that predicts each fix’s risk of 
regression. This approach exploits features of a 
standard engineering process, so it can used for a 
variety of software projects.

Risk Prediction  
in Software Projects
Considerable research exists on risk prediction in 
software projects. In particular, researchers have 
concentrated on fault proneness prediction (FPP) 
models.2–4 These models tend to predict which 
parts of the newly developed software system will 
be most prone to failures. According to FPP mod-
els, a system consists of components described by 
metrics (numeric properties) such as code complex-
ity or the number of prerelease changes. Some sta-
tistical model, such as a decision tree2 or logistic 
regression,3 uses these metrics to predict the com-
ponents’ fault proneness. Initially, you train the 
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statistical model on data about a similar software 
system for which you know the components’ met-
rics and fault proneness (which components have 
failed). Once you’ve trained the model, you can use 
it to predict the new system’s fault proneness.

Unfortunately, FPP models aren’t designed to 
predict the risk for a particular software update. 
Nevertheless, you can build a model to predict soft-
ware regressions that works similarly to FPP mod-
els: a set of metrics will describe each code change. 
On the basis of these metrics, some statistical 
method will predict each change’s regression risk 
(see Figure 1).

Predicting software regressions is a much less 
explored area; very few research papers address 
this topic.5,6 This lack of research might be due 
to the difficulties of mining data on fixes. To be 
trained, a statistical model requires detailed infor-
mation on hundreds of prior fixes. Unfortunately, 
such information is scattered throughout multiple 
data sources: version control systems (VCSs), bug-
tracking databases (BTDs), mailing lists, and even 
the program’s source code. When the data is in 
these discrete sources, it’s hardly accessible and so 
is of little value. To be useful, we must extract it, 
clean it, and convert it into an appropriate format. 
So, to build a regression prediction model, we need 
to develop a special program called a mining tool 
that performs these tasks.

Researchers have recently discussed several de-
signs for mining tools. Usually, this has occurred 
in the context of some concrete problem, such as 
discovering fix-introducing changes,6 helping new 
programmers understand a large project,7 or dis-
covering patterns in a project’s history.8 Instead of 
developing a specialized tool just for extracting fix 
metrics, we created a more flexible tool that we can 
use for other purposes—BCT.

Evolution of a Software System
When any change in Windows is necessary, a pro-
gram manager, test engineer, or support special-
ist creates a bug record in the BTD. Each bug re-
cord has a unique identifier (bug ID) and contains 
fields describing the change: its type (whether it’s 
a bug fix or new functionality), the date the re-
cord was created, and other information. If the 
bug is a fix for a regression, the record includes a 
reference to the bug that caused the regression.

Once initial analysis of the bug is done, a devel-
oper downloads the current version of the source 
code from the VCS and makes the change. The VCS 
stores a complete history of changes to the product’s 
code at the source file level. When a developer adds 
a new file to the VCS, the file’s version is set to 1. 

Each time the file changes, its version number in-
creases by one.

After the developer implements a change and 
the change passes some basic functionality testing, 
he or she integrates the changed source files back 
into the VCS. The integration takes the form of an 
atomic transaction, or check-in. Each check-in has 
a unique number (check-in ID) and contains a list of 
changed source files, developer comments (descrip-
tion), the change’s date, and the developer’s name.

Once the fix’s development is complete, the test 
engineer must test the change. On the basis of the 
information about the change and the test engi-
neer’s knowledge of the system, he or she estimates 
the necessary testing for that fix—that is, which 
tests to run and what level of testing is required. 
Many factors influence the amount of testing, but 
the most obvious is the regression risk: the higher 
the risk, the more thorough the testing should be.

If testing reveals any problems with the change, 
the test engineer asks the developer to fix them. 
Otherwise, the test engineer marks the bug record 

History of the old software system: used to train the model

Fix Metric 1 Metric 2 Metric N Bug caused regression?

14356 15 5 1 1 (Yes)
15875 1 1 1 0 (No)
… … … … …
45674 12 3

…

…
…
…
… 0 1 (Yes)

Fix ID* Metric 1 Metric 2 Metric 3

127961 32 563 1
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Information on fixes
and their metrics 
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*All numbers shown in this figure are sample values and do not reflect any
  engineering process used by Microsoft.

Information on which fixes
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e c0 + c1•x1 +  c2•x2 +  c3•x3y =  
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Figure 1. Building the 
regression prediction 
model. The model is 
trained using the known 
data and then used  
to predict risk for  
a new fix.
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“closed,” and a software update can be built. This 
update is a set of new binary modules (binaries) 
whose code was changed owing to the fix. These 
binaries are “wrapped” into a package and sent to 
the customer.

So, by looking at the software system and the 
history of its changes, we find several different en-
tities: bug records, developers, check-ins, source 
files, functions, and binaries. These entities are 
related. For example, each check-in consists of 
source files, and each source file can be divided 
into source functions. Each entity is uniquely 
identified by its ID and described by its metrics. 
For example, a source file can be identified by the 
combination of its name and version number and 
is characterized by size, complexity, and the num-
ber of prerelease changes. BCT’s goal is to identify 
these entities, retrieve their metrics, and restore 
the relations between them.

Mining Information  
about the Software System
While analyzing the system, BCT uses a decompo-
sition of the system into binary modules. The tool 
analyzes them one by one, accumulating the results 
until it has retrieved a complete history of changes 
in the system’s source code. For each binary, BCT 
collects information on changes that occurred only 
during a certain time interval. This interval can 
be of an arbitrary length and is specified by time 
stamps that the user passes to the tool. Finally, BCT 

collects information on all changes in the system 
that occurred during the specified time interval.

Analysis of a binary takes four steps:

	 1.	Dividing the binary into components.
	 2.	Extracting the history of code changes.
	 3.	Associating code changes with bugs.
	 4.	Storing the extracted data.

Each step uses information obtained during the 
previous one, so the steps execute in strict order.

Dividing the Binary into Components
When the compiler builds the software system, 
in addition to binaries, it generates symbol files. 
These files let us determine which chunk of a bi-
nary corresponds to a particular line in the source 
file. BCT uses this information to retrieve a com-
plete list of the names of the source files used to 
build old and new versions of the binary. Given 
these names, the tool locates corresponding 
source files in the VCS and, by knowing when the 
binary was built, accurately determines exact ver-
sions of these source files.

Next, BCT obtains the text of these source files 
from the VCS (see Figure 2). The tool processes 
each source file with a parser that locates all func-
tions in the file and then reports each function’s 
source code and signature.

Eventually, BCT restores componentization 
of the software system. It divides the binary logi-

C++

main.

C++

window

\calc\util\util.c#2
\calc\util\window.c#1
...
\calc\prog\main.c#1

Old file list

Old file list

Version
control
system

Retrieve text of
source files,
used to build
the binary.

Old file listParse source
files.

Get function’s
signatures and
source code.

Retrieve list of
source files,
used to build
the binary.

Old binary:
 calc.exe
 v.4.1.3960.4258
 15 May 2004

New binary:
 calc.exe
 v.4.1.3960.5214
 23 Oct. 2006

C++

util.cpp

C++

main.

C++

window

C++

util.cpp

\calc\util\util.c#4
\calc\util\window.c#2
...
\calc\prog\main.c#1

New file list

void foo(...) {...}
int moo(...) {...}
...
int bar(...) {...}

Old function list

void foo(...) {...}
int moo(...) {...}
...
int bar(...) {...}

New function list

Figure 2. Dividing the 
binary into components. 
The further analysis 
will be carried out in the 
context of these smaller 
components.
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cally into source files and divides the source files 
into functions (or methods, if the program has been 
developed using an object-oriented methodology). 
BCT stores each component in one of the internal 
lists. The old file list contains all the source files for 
building the binary’s old version, and the new file 
list contains the source files for building the new 
version. Correspondingly, BCT stores functions in 
the old functions list and new functions list. Each 
function contains a link to its source file, and each 
source file has a list of its functions.

Extracting the History of Code Changes
For each source file of the binary, BCT retrieves all 
the versions newer than that source file’s oldest ver-
sion (used to build the old version of the binary) 
but older than or the same age as the source file’s 
newest version (used to build a new version of the 
binary). Then, the tool performs a pairwise com-
parison of these versions in ascending order. That 
is, it compares the oldest version of the source file 
with the next one and so on, until it reaches the 
newest version (see Figure 3).

BCT compares each source-file pair at the func-
tion level. It parses the source code of each of the 
file’s two versions (older and newer) and retrieves 
their lists of functions. For each function in the 
newer version, BCT tries to locate a function with 
the same signature in the older version. If it can’t 
find a match, it considers the function to have been 

added (it’s in the newer version of the file but not 
the older one) or deleted (it’s in only the older ver-
sion). If it finds the corresponding function in the 
older version of the source file, it compares the 
function’s source code with that of the newer ver-
sion. If the source code doesn’t match, BCT con-
siders the function changed.

BCT adds these changes to the dictionary of 
atomic changes that happened to the binary. This 
dictionary’s keys are the changed functions’ signa-
tures, and its values are the lists of check-ins that 
caused these changes. The resulting dictionary 
contains all the changes that happened to all the 
functions between the old and new versions of the 
binary. Because every function has a link to the 
source file, the history of source file changes is re-
trieved automatically.

Associating Code Changes with Bugs
The VCS tells us what has been changed and when, 
but it doesn’t say why; such information is in the 
BTD. To retrieve this information, we must relate 
the code changes (check-ins) in the VCS to the cor-
responding bug records in the BTD. Usually ei-
ther the check-in or the bug record has a link to its 
counterpart.

Regarding the VCS, developers can put IDs of 
check-ins associated with a bug in the bug record’s 
special field. BCT creates a list of check-in IDs and 
scans the BTD to find all bug records pointing to 

Calendar time

util.c, ver. 2,
check-in #1432,

28 Dec. 2003

util.c, ver. 3,
check-in #1528,

18 Feb. 2005

util.c, ver. 4,
check-in #1774,

14 Jul. 2006

util.c, ver. 5,
check-in #1952,

5 May 2007

Jan. 2004 Jan. 2005 Jan. 2006 Jan 2007

Comparison 1. Functions changed:
void foo(int a, int b)
int bar(char* pszString)

Comparison 2. Functions changed:
void foo(int a, int b)
int moo(void* pStruct)

Old binary:
 calc.exe
 v.4.1.3960.4258
 Built on 15 May 2004

New binary:
 calc.exe
 v.4.1.3960.5214
 Built on 23 Oct. 2006

Changes in file util.c

Dictionary of atomic changes

Key: function signature Value: list of changes

int bar(char* pszString)
void foo(int a, int b)

check-in 1528
check-in 1528
check-in 1774

int moo(void* pStruct) check-in 1774

  
Newer 
version

Older 
version

Newer 
version

Older 
version

Figure 3. Extracting the 
history of code changes. 
For each source file, 
BCT scans the history 
of its changes and 
retrieves a list of 
changed functions.



�	 I E E E  S o f t w a r e    w w w . c o m p u t e r . o r g / s o f t w a r e

these check-ins. This is the most reliable way to 
link check-ins with bugs, but these check-in IDs 
aren’t always present in the BTD.

Regarding the BTD, developers can also leave 
numeric IDs of corresponding bug records in the 
check-in description field. Unfortunately, analy-
sis of this field is more difficult for the tool. The 
check-in description is just a text field, and any 
number in it could be considered an ID of the cor-
responding bug. So, BCT retrieves all numbers 
from the check-in description. If the BTD contains 
bugs with such IDs, the tool considers them related 
to the check-in. To remove all incorrect matches, 
BCT analyzes the closure dates of all bugs linked 
to the check-in. Normally, the test engineer should 
close a bug shortly after the developer registered 
the corresponding check-in in the VCS. Otherwise, 
BCT discards that relation between the bug record 
and the check-in.

This approach is similar to one that Jacek Sli-
werski, Thomas Zimmerman, and Andreas Zeller 
developed;6 however, our approach doesn’t perform 
lexical analysis of check-in descriptions. Neverthe-
less, the combination of both data sources (the VCS 
and BTD) lets BCT accurately detect correspond-
ing check-ins for the vast majority of bug records.

Storing the Extracted Data
This final step is straightforward: BCT stores all 
mined entities (bugs, check-ins, developers, bina-
ries, source files, and functions), their metrics, and 
their links in the SQL database.

BCT itself doesn’t mine all code metrics for 
changed functions and binaries. To extract met-
rics such as code complexity, coupling, and ob-
ject-oriented metrics, we use the MaX framework, 
another tool developed at Microsoft.9 Thanks to 
BCT’s relational model, it easily incorporates in-
formation retrieved by MaX. For example, to 
get code metrics for some function, BCT uses the 
function’s signature to query MaX databases. In 
this light, you can view BCT as a “metaminer”: 
in addition to its own ability to mine the history 
of changes, it uses external information sources to 
obtain code metrics for changed components. This 
feature, as well as the ability to collect data on dif-
ferent levels of a system’s componentization (bi-
naries, source files, and functions), distinguishes 
BCT from other tools.7,8

Using BCT  
to Predict Software Regressions
To predict a fix’s regression risk, we developed the 
Fix Regression Prediction (FRP) model. The FRP 
model is based on logistic regression, a statistical 

method.10 The model predicts the regression risk ŷ 
for a fix on the basis of the fix metrics x1, …, xn and 
model coefficients c1, …, cn:

 ̂ ...

...
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e

c c x c x

c c x c x

n n

n n
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The fix metrics are the metrics of the corre-
sponding bug record and all its related entities:

the number of changes the fix caused (the num-
ber of components it changed),
the experience of the developer who made the 
fix (the number of fixes he or she has done dur-
ing the past year),
the code metrics of the binaries, functions, and 
source files that the fix affected (their size, their 
complexity, and other metrics), and
general fix metrics (whether the change intro-
duced a new functionality, whether the fix was 
for a previously discovered regression, and 
other similar metrics).

The coefficients’ values are inherent to the 
model; they contain that “hidden knowledge” re-
garding which fix metrics are the best indicators of 
the possible regression. Coefficients are calculated 
by Matlab when we train the model such that, for 
any given fix, the predicted regression risk ŷ will be 
as close as possible to the real (observed) risk y.

The model ŷ outputs a real number greater than 
0 but less than 1; the higher ŷ is, the higher the re-
gression risk. To distinguish between high- and 
low-risk fixes, we use a numeric threshold t. If ŷ 
exceeds t, the fix is risky (the probability of a regres-
sion is high); if ŷ is less than t, the fix isn’t risky (the 
probability of a regression is low).

Measuring Accuracy
The ideal classifier would detect all high-risk fixes 
without making mistakes. However, in reality, 
some mistakes are unavoidable. Each fix prediction 
has four possible outcomes:

True positive. The fix was classified as risky 
and caused a regression.
False positive. The fix was classified as risky 
but didn’t cause a regression.
True negative. The fix was classified as not 
risky and didn’t cause a regression.
False negative. The fix was classified as not 
risky but caused a regression.

These outcomes form the basis for several met-
rics for classifier accuracy. Two of the most widely 
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another tool 
developed at 
Microsoft.
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used metrics are the true positive rate (TPR) and 
false positive rate (FPR):

TPR
number of true positives

number of all fixes th
=

aat caused regression

 FPR
number of false positives

number of all fixes t
=

hhat didn t cause regression'  

Both the TPR and FPR have values between 0 
and 1. A high-accuracy classifier will have a high 
TPR (it detects most high-risk fixes) and a low FPR 
(it makes few mistakes).

Obviously, the TPR and FPR values depend  
on t. If t is high, the classifier will detect fewer re-
gressions (low TPR) but will make fewer mistakes 
(low FPR). Correspondingly, low values of t will re-
sult in high TPR and FPR. So, an indefinite number 
of (TPR, FPR) pairs is possible. These pairs form a 
graph with TPR values on the y-axis and FPR val-
ues on the x-axis. Such a graph is called a receiver 
operating characteristic (ROC) curve.

ROC curves are widely used to estimate classi-
fier performance. The ideal classifier’s ROC curve 
would be a straight line from (0, 1) to (1, 1). The 
worst classifier’s ROC curve would be a line from 
(0, 0) to (1, 1). The area under the ROC curve 
(AUC) is a number characterizing the classifier’s 
performance. AUC = 1 for the ideal classifier;  
AUC = 0.5 for the worst one.

Building the Model
To train the model and estimate its accuracy, we col-
lected data on Windows XP and Server 2003 post-
release fixes made from 2004 through 2006. For 
each fix, BCT reported the metrics and determined 
whether the fix caused any regressions (see Figure 1).

To measure the model’s accuracy, we used a 
data-splitting technique.11 During each split, we 
randomly divided the whole data set into a train-
ing set and test set. The training set contained 70 
percent of all the fixes; the test set contained the 
remaining 30 percent. We performed 50 splits. For 
each split, we created an ROC curve and calculated 
the AUC. We then averaged the ROC curves to 
measure the model’s accuracy.

To determine which metrics best predict risk, we 
used a stepwise procedure.10 We started without 
any predictors in the model. During the forward 
step, we evaluated the available metrics one by one. 
We added a metric to the model if it resulted in a 
statistically significant improvement of accuracy. 
Once we tried all the metrics, we started the back-
ward step. We removed a metric from the model if 
its accuracy didn’t significantly deteriorate. We re-

peated this entire procedure until we couldn’t add 
or remove any metrics.

We found three metrics to be the best indicators 
of regression risk. The first is the number of source 
files affected by the fix (p = 0.006). The second is 
the summary change in the size of all functions 
changed by the fix (p < 0.001). The third is whether 
the fix introduced a new functionality (p = 0.025).

The final model’s AUC was 0.71 (see Figure 4), 
which is significantly higher than the random draw 
(AUC = 0.5).

Deploying BCT at Microsoft
Since the FRP model’s deployment in March 2008, 
the Windows Serviceability team has used it to pre-
dict regressions in upcoming Windows fixes.

When the new fix is available, BCT automati-
cally extracts its metrics and passes them to the 
FRP model, which calculates the regression risk. 
On the basis of this risk, we assign the fix to one of 
these categories:

Very high risk. The probability of regression is 
approximately X percent.
High risk. The probability of regression is twice 
the average.
Average risk. The probability of regression is 
about average.
Low risk. The probability of regression is 50 
percent of the system’s average probability of 
regression.
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Very low risk. The probability of regression is 
negligibly low.

Test engineers use this information to plan fix 
testing; fixes with high or very high risk should 
undergo rigorous testing, whereas fixes with low 
or very low risk can undergo reduced testing. The 
model has quickly gained popularity. Analysis of 
the usage logs shows that more than 70 percent of 
the test engineers on the team regularly use it.

To estimate the FRP model’s utility, we com-
pared its results with those from manual estimation 
of regression risk. Before deploying the model, the 
test engineer analyzed the fix and classified its risk 
as high, medium, or low. The results of such man-
ual estimation were available for approximately 30 
percent of all fixes in our data set. Tests revealed 
that the FRP model has significantly higher accu-
racy than test engineers. So, FRP proved useful for 
risk prediction.

We also use BCT to analyze daily builds. The 
practice of daily builds supports proper project 
management, especially when you’re developing a 
large, complex software system.12 However, if you 
look at the daily build (which is just a set of bina-
ries), you’ll have trouble finding which bugs were 
fixed. To get such information, we use BCT to com-
pare the latest build with a previous one. The result-
ing report contains a complete list of bugs fixed in 
the latest build. For each bug, BCT lists the affected 
components, related check-ins, and the names of 
the persons who made the change.

Program managers have found daily-build re-
ports useful; the reports provide a complete list of 
changes in the software project and help the man-
agers track its progress. We’re integrating build re-
ports with the FRP model. We’ll use the model to 
predict regression risk for each bug fixed in a build, 
which will help leverage testing of the daily builds.

B CT is a multipurpose tool that can mine 
vital information on a software system 
from structured data sources such as 

VCSs, BTDs, and a system’s code. Its distinctive 
feature is an explicit representation of the mined 

■

data as a set of related entities. Such an approach al-
lows the parallelization of data collection between 
multiple machines or CPUs. In addition, it lets us 
easily add new types of entities or metrics.

BCT proved a stable, scalable platform for min-
ing data, but we’re constantly improving it. We’re 
trying to increase its scalability by reducing the 
number of calls to the VCS and BTD. In addition, 
we’re taking steps to make it more flexible, so that 
any development team can easily adopt it with min-
imal effort. We’re also looking for other uses of in-
formation mined with BCT, such as developing new 
statistical models. Finally, we’re working on a BCT 
user interface that will let us visualize all processes 
occurring in the software system.

We hope that adoption of BCT and statistical 
models created with its help will further increase 
our organization’s efficiency without decreasing 
software updates’ quality.
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