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ABSTRACT

The behavior of multithreaded programs is often difficult
to understand and predict. Synchronization operations and
limited computational resources combine to produce com-
plex non-linear dependencies between a program’s configu-
ration parameters and its performance. Performance mod-
els are used to understand these dependencies. Such models
are complex, and constructing them requires a solid under-
standing of the program’s behavior. As a result, building
models of complex applications manually is extremely time-
consuming and error-prone. In this paper we demonstrate
that such models can be built automatically.

This paper presents our approach for automatically mod-
eling multithreaded programs. Our framework uses a com-
bination of static and dynamic analyses of a single repre-
sentative run of a system to build a model that can then
be explored under a variety of configurations. We show how
the models are constructed and show they accurately predict
the performance of various multithreaded programs, includ-
ing complex industrial applications.

Categories and Subject Descriptors

F.3.2 [General]: Logics and Meaning of Programs—Pro-
gram analysis; C.4 [Computer Systems Organization]:
Performance of systems—Modeling techniques
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1. INTRODUCTION
Multithreaded programs demonstrate complex non-linear

dependency between the configuration and performance. Con-
figurations may reflect variations in the workload, program
options such as the number of threads, and characteristics
of the hardware. To better understand this dependency a
performance prediction model is used. Such a model predicts
performance of a program in different configurations.
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Performance models are essential for a variety of appli-
cations [20], [10], [28]. For example, a model may be used
to find a good configuration for deploying the Tomcat web
server. For each combination of configuration parameters,
including the number of available CPU cores, the number
of Tomcat working threads, or the rate of incoming con-
nections, the model will predict response time, throughput,
and resource utilization for Tomcat. A configuration that
utilizes resources efficiently and satisfies the service agree-
ment can be used for deployment. Performance models also
can be used to detect performance anomalies and discover
bottlenecks in the program.

Modern multithreaded applications can be large and com-
plex, and are updated regularly. Building their models man-
ually is extremely time-consuming and error-prone. To be
practical, building such models should be automated.

Building performance models of such applications is hard.
First, it requires discovering queues, threads, and locks in
the program; details of their behavior; and semantics of their
interaction. Doing this automatically requires complex pro-
gram analysis. Second, it requires measuring demand for
hardware resources such as the CPU, disk, and the network.
This is a complex problem that requires collecting and com-
bining information from multiple sources. Third, the per-
formance of a parallel system is dependent on its contention
for computation resources and locks. Accurate modeling re-
quires simulating these resources and locks in detail.

This paper presents an approach towards automated per-
formance modeling of multithreaded programs. Its main
contribution is a combination of a model that accurately
simulates complex thread interactions in a program and a
methodology to build such models automatically. The paper
makes the following technical contributions:

• A combination of static and dynamic analyses for un-
derstanding the structure and semantics of multithre-
aded programs automatically;

• An approach for collecting parameters of performance
models from user- and kernel-mode traces;

• Verification of our approach by constructing models of
various multithreaded programs

While working on the automatic model generation we
made important findings. First, the analysis of a program
could be greatly simplified if that program relies on well-
defined implementation of high-level locks (semaphores, bar-
riers, blocking queues etc.). Second, in order to be fast and
easy to understand the resulting model must be simple and



compact. Building compact models requires identifying pro-
gram constructs that do not have significant impact on per-
formance, and excluding these constructs from the model.
Third, accurate prediction requires precise measures of re-
source demands for the elements of the program. In certain
cases small errors in measuring resource demands can lead
to large prediction errors.

2. SCOPE AND CHALLENGES
We analyze performance of multithreaded applications such

as servers, multimedia programs, and scientific computing
applications. Such programs split their workload into sep-
arate tasks such as an incoming HTTP request in a web
server, a part of a scene in a 3D renderer, or an object in a
scientific application. We do not model the performance of
individual tasks or requests; instead we predict the aggregate
performance of the system for a given workload.

Processing tasks is parallelized across thread pools. A
thread pool is a set of threads that have same functional-
ity and can process tasks in parallel. Multiple threads rely
on synchronization to ensure semantic correctness (e.g. the
thread may start executing only after a barrier is lifted) and
to protect shared data. This results in the parallel execu-
tion of some computations and the sequential execution of
others. Threads also use shared hardware resources, such
as the CPU, disks, and the network simultaneously, which
may lead to their saturation. This combination of locking
and simultaneous resource usage leads to complex non-linear
dependencies between configuration parameters of the pro-
gram and its performance. As a result, even an expert may
be unable to understand such dependencies on a quanti-
tative level. The best approach is to build a performance
prediction model.

We concentrate on the following aspects of performance
modeling:

Automatic generation of performance models. We
minimize the need for human participation in building the
model. Our program analysis and model generation are done
automatically. The analyst need only inspect the gener-
ated model and specify configurations in which performance
should be predicted and the metrics that should be collected.

Generating models from a running a program in
a single configuration. Building the model should not
require running the program many times in many configu-
rations. Such experimentation is time-consuming and may
not be feasible in a production environment. Instead, we
want to generate the model by running a program in a sin-
gle representative configuration, in which the behavior and
resource demands of the program approach the behavior and
resource demands of a larger set of configurations.

Accurate performance prediction for a range of
configurations. This lets our model to answer “what-if”
questions about the program’s performance, detect perfor-
mance anomalies in the running program, and be used as a
decision-making element of a self-configuring data center.

We model programs running on commodity hardware. Pre-
dicting performance of programs running on cluster and grid
systems would require developing an additional set of hard-
ware models and potentially different approach for program
analysis, which is beyond the scope of this paper.

Building performance models of complex, multithreaded
systems is challenging. The primary challenges are:

Discovering the semantics of thread interaction.

Building the performance model requires knowledge of the
queues, buffers, and the locks in the program, their seman-
tics (e.g. is this particular lock a semaphore, a mutex, or a
barrier), and interactions (e.g. which thread reads or writes
to a particular queue or accesses a particular lock). There
are numerous ways to implement locks and queues, and to
expose their functionality to threads. Discovering this infor-
mation automatically requires complex program analysis.

Discovering parameters of the program’s compo-
nents. Performance of the program depends on parameters
of its locks and queues, and on the resource demands of its
threads. For example, the amount of time the thread has
to wait on a semaphore depends on the number of avail-
able semaphore permits. The amount of time the program
spends on the disk I/O depends on the amount of data it has
to transfer. However, the retrieving parameters of locks and
queues may require further program analysis and obtaining
resource demands may require instrumenting the OS kernel.

3. MODEL DEFINITION
Below we briefly describe the model we build automat-

ically. We use discrete-event simulation models [23] that
consist of three tiers.

The high-level tier simulates the flow of tasks processed by
the program. It is a queuing network model whose queues
correspond to program’s queues and buffers as well as to
some OS queues. The service nodes correspond to the pro-
gram’s threads and thread pools.

The mid-level tier simulates the delays that occur in the
program’s threads as they process tasks. Thread models are
probabilistic call graphs (PCGs), where each vertex si ∈ S

corresponds to a piece of the thread’s code – a code fragment
(CF). Edges represent possible transitions of control flow be-
tween the CFs and are labeled with their probability. Transi-
tion probabilities are defined by the mapping δ : S → P (S).

We distinguish three major sources of delays in processing
tasks, which correspond to three classes of code fragments:
I/O code fragments (denoted as cio) represent I/O opera-
tions; synchronization (csync) CFs represent synchronization
operations; computation (ccpu) CFs represent computations
and memory operations. In addition, cin and cout CFs com-
municate with the high-level queuing model. cin CFs fetch
tasks from the queues of the queuing model, while cout CFs
send tasks to the queuing model.

The lower-tier model simulates the system’s shared re-
sources: the CPU and the OS thread scheduler, the disk
I/O subsystem, and the set L = {l1, ..., lm} of locks in the
program. These models are part of Q(t) – the state of the
whole simulation at each moment of time t.

As an example, a model of a simple web server is shown in
Figure 1. The accept thread listens for incoming connections
(the CF s1 in its thread model). Once the connection has
been accepted, the accept thread creates a task object (s2
- s4) and sends (s5) it into the task queue. Once one of
the working threads becomes available, it fetches (s6) the
task from the queue and processes it (s7 - s8). The working
thread verifies that the requested page exists, reads if from
the disk, and sends it to the client. Finally, the thread closes
the connection and fetches the next task from the queue.

Execution of each CF results in the delay τ . While the
call graph structure 〈S, δ〉 does not generally change between
different configurations, execution times for code fragments
can be affected by resource contention. To accurately simu-



Figure 1: A model for a web server

late the time delays τ we rely on the lower-tier models.
For each code fragment we define a set of parameters Π

(see Table 1). The parameter of a computation CF Πcpu =
〈τcpu〉 is the CPU time for that fragment. The parame-
ters of a disk I/O CF is a sequence Πdisk = 〈dio1, ..., diok〉
of low-level disk I/O operations initiated by that CF. The
number k of I/O requests allows to implicitly simulate the
OS page cache. It was shown [15] that after serving a suffi-
cient number of requests (104 to 105 in our experiments), the
cache enters a steady state, where the probability of cache
hit converges to a constant. In terms of our model, k follows
a stationary distribution, where k = 0 indicates a cache hit.

Values of Πcpu and Πdisk vary across different executions
of CFs, so we represent them as distributions PΠ

cpu and P
Π
disk.

The parameters Πsync = 〈lid, optype, τout〉 of a synchro-
nization CF are the ID of the lock being called, the type of
synchronization operation (e.g. barrier.await, mutex.enter,
or mutex.exit), and the timeout.

When the thread model needs to compute the τi for the
CF si, it retrieves the parameters Πi and calls the corre-
sponding low-tier resource model: ccpu CFs call the model
of the CPU and OS scheduler, cio CFs call the model of
disk I/O subsystem, and csync CFs call the model of a
corresponding lock lj ∈ L, which simulates that lock se-
mantically. The resource model computes τ as a function
τ = f(Π, Q(t)). Once the delay τ is over, the resource model
notifies the thread model, which resumes its execution.

Low-level resource models have parameters too. In partic-
ular, the parameter of the CPU is the number of cores. The
parameters 〈lid, ltype, lparam〉 of the lock lj ∈ L are the
lock ID, lock type (e.g. semaphore, barrier, or mutex), and
the additional parameters specific to the type of the lock.
For example, the parameter of the barrier is the barrier ca-
pacity, and the parameter of the semaphore is its count.

Low-level models are implemented as a combination of
queuing and statistical models. Their detailed description
is beyond the scope of this paper. Information on modeling
hardware and locks and can be found in [35],[38],[22].

4. AUTOMATIC MODEL GENERATION

Table 1: Model components and their parameters
Entity Description
S = {s1...sn} The set of all nodes (code fragments)

in the PCG
δ : S → P (S) Transition probabilities for PCG nodes
τi Delay caused by executing CF si ∈ S

Πdisk = I/O CF parameters: a sequence of
〈dio1, ..., diok〉 low-level I/O operations

Πcpu = 〈τcpu〉 Computation CF parameters:
the amount of CPU time

Πsync = Synchronization CF parameters: an ID
〈lid, optype, τout〉 of the lock called, operation type, timeout

L = {l1...lm} The set of all locks in a program
Πlock = Lock parameters: an ID of the lock,

〈lid, ltype, lparam〉 lock type, type-specific parameters

Constructing the performance model requires collecting
the following information about the program automatically:

• The set of queues, threads (correspond to service nodes
in the upper-tier model), and knowledge of their inter-
actions (correspond to cin/cout CFs in the middle-tier
model);

• The set of thread pools. The sizes of thread pools are
configuration parameters that impact performance;

• The computations, I/O, and locking operations (corre-
sponding to the set S of CFs) and the sequence of their
execution (corresponding to transition probabilities δ);

• The parameters of CFs, required to model delays τ ;

• The set L of locks, their types, and parameters Πlock.

We collect the required data in four stages (see Figure 2)
using a combination of static and dynamic analysis. Each
stage saves intermediate results into files that are used as
input to subsequent stages.

First, the program is executed and its call stack is sam-
pled. The stack samples are used to detect thread groups
and libraries in the program. Second, a static analysis of the
program is performed. During this stage we detect csync, cin,
cout, and cio CFs. Third, the program is instrumented and
executed again with the same configuration. The instrumen-
tation log is used to detect program-wide locks and queues,
properties Π of code fragments, and to build the probabilis-
tic call graphs 〈S, δ〉 of the program’s threads. Finally, the
collected information is used to build a performance model.
All these operations are performed automatically.

Below we describe these stages in more details.

4.1 Collecting stack samples
During the stack sampling stage our framework finds thread

pools, frequently called functions and methods in the pro-
gram, and frequently called library functions. Identifying
libraries is essential for generating correct probabilistic call
graphs (see Section 4.3.1).

As the program is being executed, the framework period-
ically takes “snapshots” of the call stack of the running pro-
gram, which are merged to build a call trie of the program.
In a call trie each leaf node contains the code location being
executed, which includes the name of a function or a method
being executed, and a line number. The non-leaf nodes
provide a call stack for that code location. For each leaf
the framework maintains the list of pairs 〈t1, c1〉, . . . 〈tn, cn〉,



Figure 2: Model creation stages and intermediate results

where the ci is the number of executions of that code loca-
tion by the thread ti.

Thread groups are detected in two stages. First a map
T is created. Its keys are thread tuples discovered by sam-
pling, and its values are execution counts. For each leaf in
the trie the framework retrieves a tuple T i = 〈t1, . . . tk〉 of
threads that executed the node along with the total number
of executions Ci =

∑
(c1, . . . , ck). If T does not contains

the tuple T i, the pair 〈T i, Ci〉 is inserted into T. Otherwise
the number of executions for the existing tuple is increased
by Ci.

Second, thread tuples in T are merged. The tuple 〈T1, C1〉
can be merged with 〈T2, C2〉 if and only if all threads in
T2 also present in T1 and C1 ≫ C2. The resulting tu-
ple is formed as 〈T1, C1 + C2〉. After merging, the tuples
T1 . . . Tm ∈ T represent the thread pools detected in the
program.

Stack samples are also used to identify program’s libraries.
For every function f the framework generates the set of func-
tions 〈f1, ..., fn〉 that called f . If the number of callees n > 1,
f is added to the set of library functions. Although the stack
sampling may not detect some rarely executed library func-
tions, this does not affect correctness of our models.

4.2 Static analysis
During static analysis our framework scans the code of

the program and detects csync, cio, cin and cout CFs. It
also detects the creation points of locks and queues in the
program, as a prerequisite for the dynamic analysis.

The static analyzer represents the program as a depen-
dency graph. The vertices of this graph correspond to func-
tions and methods in the program (both called “function”
herein). The edges are code dependencies (e.g. the func-
tion A calls the function B) and data dependencies (e.g.
the function A refers the class B or creates the instance of
B) between these functions. The transitive closure of all the
vertices in the dependency graph represents all the code that
may be executed by the program.

The static analyzer traverses the dependency graph, start-
ing from the functions discovered during the stack sampling.
It scans the code of the functions, searching for the specific
constructs that represent CFs. In the process the analyzer
searches for references to other functions and methods, that
are subsequently loaded and analyzed.

There are numerous ways to implement synchronization in
a program. As a result, detecting cin, cout and synchroniza-
tion CFs and determining their operation types optype may
require complex analysis that is very hard to automate. We
therefore assume the program has used specific implemen-
tations of locks and queues for thread interactions. Exam-
ples of such implementations are the java.util.concurrent
package in Java, the System.Threading namespace in C#,
and the boost threading library in C/C++.

The analyzer considers calls to specific functions that per-
form synchronization operations and access program’s queues
as csync, cin, and cout CFs appropriately. Typically, these
are the functions that constitute the API of the correspond-
ing thread and locking library. The class of the CF and the
type of synchronization operation optype are inferred from
the name and the signature of the called function.

The analyzer also tracks low-level synchronization primi-
tives, such as monitors, mutexes, and synchronized regions.
Our models simulate these constructs explicitly as csync CFs.
However, when the combination of low-level primitives is
used to implement a high-level lock, the probabilistic call
graph (PCG) may not be able to capture the deterministic
behavior of such lock. Consider a custom implementation of
a cyclic barrier that maintains the counter of waiting thre-
ads. When the thread calls the barrier, the program checks
the value of the counter. If the value of the counter is less
than the capacity, the calling thread is suspended; otherwise
the program wakes up all the waiting threads. In the PCG
this behavior will be reflected as a fork with the probabil-
ity of lifting the barrier equal to 1/(barrier capacity). As a
result, in certain cases the model will lift the barrier prema-
turely, and in other cases it will not lift the barrier when it
is necessary.

The analyzer also tracks calls to the constructors and ini-
tializers of locks and queues. These calls do not directly
correspond to the csync CFs, but they are used to detect
queues and locks in the program and retrieve their parame-
ters during the dynamic analysis.

To discover the cio code fragments, the analyzer tracks
API functions that can perform disk I/O. Calls to the func-
tions that may access the file system metadata are consid-
ered as I/O CFs as are the bodies of low-level functions that
perform file I/O.

4.3 Dynamic analysis
The purpose of dynamic analysis is to identify ccpu CFs,

the parameters of locks and CFs, and the probabilistic call
graphs 〈S, δ〉 of the program’s threads.

The dynamic analyzer instruments the program and runs
it again in the same configuration as the initial stack-sampling
run. Each CF detected during the static analysis is instru-
mented with two probes. A start probe is inserted immedi-
ately before the CF, and an end probe is inserted right after
the end of the CF. Each probe is identified by the unique
numeric identifier (probeID).

Probes report the timestamp, the probeID, and the thread
ID. For CFs corresponding to a function call, the start probe
reports function’s arguments, and the end probe reports the
return value. For method calls probes also report the ref-
erence to the called object, if relevant. This information is
used to obtain parameters of csync, cin, and cout CFs.



ProbeID Timestamp ObjectID Arguments/
return value

10 11345231 7683745 0
11 11387461 7683745 4387459
27 11391365 87235467
28 11392132
10205 11396190 1872565
10206 19756012 1872565
6 19873872 87235467
7 19873991
10205 19923752 32748998
10206 25576572 32748998

...

Figure 3: A fragment of the trace for a thread.

During its execution the instrumented program generates
the sequence of probe hits on a per-thread basis, which con-
stitute a trace of the thread. Two coincident probe hits in
the trace form a pair 〈start probe ID, end probe ID〉. Every
such pair represents an execution of a single code fragment.

The 〈start probe ID, end probe ID〉 pairs are“overlapping”
in the trace, so the end probe ID of one pair becomes the
start probe ID of the next pair. Thus executions of cio, csync,
cin, and cout CFs in the trace are interleaved with pairs of
probe IDs. These pairs, which represent computations per-
formed between executions of cio, csync, cin, and cout CFs,
correspond to ccpu CFs.

The Figure 3 depicts an example of such trace. Here the
CF 〈10, 11〉 is a cin CF. The object ID=7683745 recorded by
the probe 10 identifies the queue, while the argument value
0 correspond to the timeout of 0 milliseconds. The probe
11 reports the return value 4387459, which is an ID of the
retrieved object. 〈27, 28〉 and 〈6, 7〉 are synchronization CFs
corresponding to the entry and exit from the synchronized
region. The object ID=87235467 identifies the monitor as-
sociated with that region. Two instances of 〈10205, 10206〉
I/O CF correspond to two (unrelated) file read operations
from the disk. Their object IDs identify the instances of
the corresponding file objects. Pairs 〈11, 27〉, 〈28, 10205〉,
〈10206, 6〉, and 〈7, 10205〉 are the computation CFs.

4.3.1 Construction of probabilistic call graphs

A näıve approach to generating the probabilistic call graph
(PCG) for a thread is to treat the set s1 . . . sn of CFs discov-
ered in the trace as the set S of nodes in the PCG. For each
node si ∈ S the subset Snext = {sk, . . . , sm} of succeeding
nodes is retrieved, along with the numbers of occurrences of
the pairs (si, sk), . . . , (si, sm). The probability of transition
from the node si to sj , j ∈ (k . . . m) is calculated as

p(si, sj) =
count(si, sj)∑m

l=k
count(si, sl)

(1)

Probabilities of transition for every pair of nodes consti-
tute the mapping δ : S → P (S) in the mid-tier model.

The näıve approach may not represent calls to the pro-
gram’s libraries correctly and generates overly complex PCG.
To become practical, this approach must be improved.

Correct representation of library calls. Distinct ex-
ecution paths in the program must be represented as non-
intersecting paths in the PCG, so that the control flow in
the model will not be transferred from one such path to
another. However, if these execution paths call a library

Figure 4: Top: the ground truth PCG from the
thread trace. Bottom: the incorrect PCG gener-
ated from the trace that contains a library call.

function containing a code fragment, the instrumentation
would emit same probe IDs for both calls, which correspond
to executing the same CF. As a result, distinct execution
paths will be connected by the common node in the PCG,
which is semantically incorrect.

For example, according to the trace shown on the Figure 3
the program enters the synchronized region, reads data from
a file, exits the synchronized region, and performs another
unrelated file read. The “ground truth” call graph has no
loops or branches (see Figure 4, top). However, both I/O
operations will eventually call the same read() I/O API that
contains an 〈10205, 10206〉 I/O CF. As a result, the gener-
ated PCG will contain a loop in it (see Figure 4, bottom).
While simulating this loop the model may not exit the syn-
chronized region, or may attempt exiting it multiple times.
In both cases the behavior of the model will be incorrect.

To address this problem the dynamic analyzer represents
separate calls to the library CFs as separate PCG nodes
using the node splitting technique described in [33]. For
every CF located within one of the program’s libraries, the
analyzer adds a context information describing the origin of
the call to that library.

This information is obtained by instrumenting calls to the
library functions discovered during the stack sampling (see
Section 4.1). An entry library probe is inserted before every
call to a library function; an exit library probe is inserted
after such call. As the analyzer scans the trace, it maintains
a call stack of library probes. When the entry library probe
is encountered in the trace, its ID is added into the stack.
This ID is removed from the stack when the corresponding
exit probe is detected. When the analyzer detects the CF, it
adds the sequence of library probe IDs present in the stack
as the prefix of that CF ID.

For an example, consider that entry/exit library probes
500/501 and 502/503 were inserted into the program, so the
resulting sequence of probe IDs in the trace is 10, 11, 27,
28, 500, 10205, 10206, 501, 6, 7, 502, 10205, 10206, 503.
The corresponding sequence of CF is 〈10, 11〉, 〈11, 27〉, 〈27,
28〉, 〈28, 10205〉, 〈500, 10205, 10206〉, 〈10206, 6〉, 〈6, 7〉, 〈7,
10205〉, 〈502, 10205, 10206〉, which is consistent with the
ground truth PCG.

Reducing the complexity of the model. According
to the näıve approach, all the computations between cio,
csync, cin, and cout CFs are represented as ccpu CFs, even if
their impact on performance is negligible. Similarly, every
synchronization region is represented as a pair of CFs, even
if it is very short and never becomes contended in practice.
This leads to an unnecessary complex PCG, consisting of
thousands of CFs (see Table 2). Such complex models have
low performance and are hard to analyze. To simplify the



model we remove all the insignificant CFs that have negli-
gible impact on the program’s performance.

Model optimization is performed in two steps. First, the
whole timeline of the program’s execution is split into three
phases: the startup phase, when the program doesn’t pro-
cess tasks yet; the work phase, when the program processes
tasks; and the shutdown phase, when the program doesn’t
process tasks any more. Finding stages is easy for programs
that handle external requests, such as servers. A timestamp
marking the beginning of the work phase is recorded before
issuing the first request, and the end timestamp is recorded
after the last request is complete. If startup or shutdown
stages cannot be easily defined for a program, we assume
these stages are absent in the trace.

The model doesn’t simulate program’s performance dur-
ing the startup and shutdown phases. Among all CFs ex-
ecuted during the startup phase, only the CFs that are re-
quired to build a semantically correct model (cin, cout, and
csync CFs that perform complex synchronization operations,
such as awaiting on the barrier) are incorporated into the
model. Remaining CFs are considered as insignificant. All
the CFs executed during the shutdown phase are considered
as insignificant.

Second, the insignificant CFs executed during the work
phase are removed from the model. These are ccpu CFs
whose summary CPU times amounts to less than t% of the
overall CPU time for the thread, and cio CFs whose sum-
mary data transfer amounts to less than t% of data trans-
ferred by the thread. Setting t = 3−5% allows shrinking the
PCG by 50-70% without noticeable impact on the accuracy.

Accounting for determinism in the program be-
havior. Some program behaviors are difficult to represent
accurately using a probabilistic model. First, the execution
flow may take different paths depending on the availability
of the task in the queue. To account for this c

fetch
in and

c
nofetch
in “virtual” nodes are inserted after each cin node in

the PCG. The c
fetch
in node is executed when the cin CF was

able to fetch the task from the queue. c
nofetch
in is executed

if cin did not fetch the task and exited by the timeout.
Second, representing loops as cycles in a PCG may affect

the model’s accuracy. If a loop that performs exactly n iter-
ations is represented as a cycle in a PCG, then the number of
iterations X for that cycle will not be a constant. It can be
shown thatX will rather be a random variable that follows a
geometric distribution with mean n and a probability mass
function Pr(X = k) = 1

n
· (1 − 1

n
)k−1. In most cases this

representation has a minor effect on the prediction accuracy.
However, if the program’s performance y strictly follows the
function y = f(n), the predicted performance y′ will be a
function of a random variable y′ = f(X), whose parameters
(mean, standard deviation) may differ noticeably from y.

In our experiments such mispredictions occurred if the
loop performed an initial population of the program’s queues
with tasks. To address this issue the dynamic analyzer de-
tects loops in the trace using the algorithm [27]. If the loop
contains the cout node, the model explicitly simulates it.
Otherwise the loop is represented as a cycle in the PCG.

4.3.2 Retrieving parameters of code fragments

The dynamic analyzer retrieves parameters of the model’s
constructs from the trace.

Locks and task queues. Parameters of locks and queues
are obtained from the arguments passed to constructors and

intializers of these locks and queues, and from their return
values. The lock type ltype is inferred from the signature
of the constructor/intializer. The type-specific parameters
lparam are retrieved from the values of arguments passed
to that constructor. The lock ID lid is obtained from the
reference to the lock returned by the constructor; it uniquely
identifies each lock li ∈ L. Queues and their parameters are
obtained in the same manner.

csync, cin, and cout CFs. Parameters of these CFs are
obtained from the arguments passed to functions and meth-
ods operating on locks and queues, and from their return
values. The ID of the called lock lid is obtained from the
reference to the lock; it is matched to the lid returned by
the lock constructor/initializer. The type of synchroniza-
tion operation optype is inferred from the signature of the
called function. The operation timeout τout is retrieved from
the arguments passed to the function. Parameters of the
cin/cout CFs are obtained in the same manner.

Some low-level synchronization operations, such as an en-
try/exit from a synchronized block, might not call functions
or methods. optype for such operation is obtained by ana-
lyzing the corresponding instruction in the program. lid is
obtained from the reference to the associated monitor.

ccpu CFs. The parameter of the ccpu CF is the distribu-
tion P

τ
cpu of CPU times τcpu. τcpu can be accurately mea-

sured when the execution time of a thread can be deter-
mined. When this is not the case, τcpu is measured as the
difference between the timestamps of start and end probes
of the CF, substituting clock time for CPU time. However,
in order to use the latter approach we need to avoid config-
urations where CPU congestion is likely.

cio CFs. The parameters of the cio CF are the num-
ber k and properties (the type of I/O operation and the
amount of data transferred) of low-level disk I/O requests
{dio1, ..., diok} initiated by that cio CF. This request-specific
data can be retrieved only from the OS kernel. We used the
blktrace [1] to retrieve the log of all kernel-mode disk I/O
operations initiated by the program.

Generally, the timestamps and thread IDs in the kernel-
mode I/O log might not match the timestamps and thread
IDs in the instrumentation log. To match blktrace log to
the instrumentation log the dynamic analyzer uses cross-
correlation – a technique used in signal processing [36]. The
cross-correlation (f ⋆g)[t] is a measure of similarity between
signals f and g, where one of the signals is shifted by the
time lag ∆t. The result of a cross-correlation is also a signal
whose maximum value is achieved at the point t = ∆t. The
magnitude of that value depends on similarity between f

and g. The more similar are those signals, the higher is the
magnitude of (f ⋆ g)[∆t].

The analyzer represents sequences of I/O operations ob-
tained from the kernel-mode trace and user-mode trace as
signals taking values 0 (no I/O operation at the moment)
and 1 (an ongoing I/O). It generates user I/O signals U =
{u(t)1...u(t)N} for each user-mode thread obtained from the
program trace, and kernel I/O signals B = {b(t)1...b(t)M}
for each kernel-mode thread from the blktrace log.

Figure 5 depicts the cross-correlation between signals u(t)
and b(t). The cross-correlation signal (u(t) ⋆ b(t))[t] reaches
its maximum value at the point ∆t = 324, which means that
the user signal u(t) is shifted forwards by ∆t = 324 ms with
relation to the kernel signal b(t).

The dynamic analyzer matches user to the kernel I/O sig-



Figure 5: Cross-correlation between I/O signals

nals using a greedy iterative procedure. For each pair of
signals 〈u(t)i ∈ U , b(t)j ∈ B〉 the analyzer computes a
cross-correlation signal xcorrij = b(t)i ⋆ u(t)j and the value
∆tij = argmaxt(xcorrij). The user signal u(t)i matches
the kernel signal b(t)j if the maximum value of the cross-
correlation signal xcorrij [∆tij ] is the highest across the sig-
nal pairs.

Next the analyzer aligns user and kernel-mode traces by
subtracting the ∆t from the timestamps of the user-mode
trace. Finally, the kernel-mode I/O operations are asso-
ciated with the user-mode states. Each kernel mode I/O
operation dioj is described as a time interval [tbstart, t

b
end]

between its start/end timestamps. Similarly, invocations
of the user mode I/O CFs are described as time intervals
[tustart, t

u
end]. The kernel-mode I/O operation dioj is consid-

ered to be caused by the user-mode I/O CF if the amount
of intersection between their corresponding time intervals is
maximal across all the I/O CFs in the trace. Correspond-
ingly, a sequence dioj ...dioj+k of low-level I/O operations
associated with the execution of the user-mode CF are con-
sidered to be parameters 〈dio1 · · · diok〉 ∈ P

Π
disk of that CF.

A user-mode I/O CFs that does not intersect any kernel-
mode I/O operation is considered as a cache hit (k = 0).

4.4 Constructing the performance model
The result of the program analysis is a set of text and xml

files, which contain all the information required to generate
the model: the list of threads, thread pools, and queues
in the high-level model; the set S of CFs, their classes and
properties Π; transition probabilities δ; the set of locks L and
their properties Πlock. This information is used to generate
the three-tier performance models described in the Section 3.
The models are implemented using the OMNeT simulation
toolset [2] and can reviewed in the OMNeT IDE.

To start using the model the analyst must specify the
model’s configuration parameters (the numbers of threads
in the thread pools, intensity of the workload, sizes of the
queues, the numbers of CPU cores etc). The analyst must
also specify what performance data should be collected. The
model can provide performance data for CFs (execution time
τ ), for a group of CFs (e.g. a processing time of the task
by the thread), or for the whole program (e.g. throughput
or a response time). These are the only manual actions
performed during the model construction.

5. MODEL VERIFICATION
We implemented our approach as a tool for automatically

building models of Java programs. The tool uses ASM [3]
framework for bytecode analysis and instrumentation.

We used our tool to automatically build performance mo-

dels of large industrial programs, which demonstrates the
practicality of our approach. We also built models of various
small- to medium-size programs, demonstrating our ability
to model different types of multithreaded applications.

We estimated the accuracy of our predictions by build-
ing the model of each program from one configuration and
using it to predict performance in a set of other configura-
tions. Then we measured actual performance of the non-
instrumented program in same configurations. To get reli-
able measurements we performed three runs of both the ac-
tual program and its model in each configuration. The mean
values of measured and predicted performance metrics were
used to calculated the relative error ε of the model:

ε =
|measured− predicted|

measured
(2)

We conducted our experiments on a PC equipped with
the 2.4 GHz Intel quad-core CPU, 8GB RAM, and 250 Gb
HDD running Ubuntu Linux. To uncover potential artifacts
in the performance of the test programs our configurations
cover a variety of program’s behaviors, ranging from under-
utilization of resources (e.g. when the number of active thre-
ads is less than CPU cores) to their over-utilization. Below
we describe our simulations in detail.

5.1 Modeling large industrial applications
We built performance models of two industrial open source

Java programs: Sunflow 0.07 3D renderer and Apache Tom-
cat 7.0 web server. We predicted the performance of Tomcat
in two setups: as a standalone web server hosting static web
pages and as a servlet container. Considering difference in
Tomcat functionality over these setups, corresponding mo-
dels are significantly different. Table 2 provides information
on programs and their models.

Instrumentation did not alter semantics of these programs,
but it introduced some overhead. The amount of overhead,
measured as a relative increase in the task processing time
by an instrumented program, constituted 2.5%-7.6%.

The complexity reduction algorithm eliminated 99% to
99.5% of all CFs as insignificant in Tomcat and Tomcat+iText
models correspondingly. Most of insignificant CFs were de-
tected during the startup or shutdown stages. No startup
or shutdown stages were detected in the Sunflow, and only
80% of its CFs were eliminated as insignificant.

Our models run 8-1000 times faster than the actual pro-
gram (see Table 2). The actual speedup depends not on the
size of a program, but on a ratio between the times required
to simulate CFs by the model and times required to exe-
cute these CFs by the program. Simulating a CF requires
a (roughly) constant amount of computations, regardless of
its execution time. Thus models that invoke many CFs with
short execution times or simulate intense locking operations
tend to run slower. As a result, eliminating insignificant CFs
is essential for high performance of the model.

Using performance models offers two additional sources of
speedup over benchmarking. First, multiple instances of a
model can run simultaneously on a multicore computer. Sec-
ond, the model does not require a time-consuming process
of setting up the live system for experimentation.

Sunflow 3D renderer. Sunflow uses a ray tracing al-
gorithm for image rendering [4]. The main thread splits
the frame into multiple tiles and stores them in the queue.
The pool of working threads reads tile coordinates from the



Table 2: Large programs and their models
Tomcat Tomcat+iText Sunflow
(web server) (servlet container)

Program size (LOC) 182810 283143 21987
Number of probes 3178 3926 380
Mean instrumenta-
tion overhead 7.3% 2.4% 5.7%
Number of CFs 11206 9993 209
Total number of
nodes in the model 82 49 42
Simulation
speedup 8-26 37-110 1050

Figure 6: Predicted and measured performance of
Sunflow. Good accuracy for configurations involving
under- and over-utilization of resources

queue, renders the image tiles, and synthesizes the resulting
image. Given the constant size of the image, the number of
working threads and the number of CPU cores are two main
factors that determine the performance of the Sunflow. The
time required to render the image is the main performance
metric.

We predicted Sunflow performance with 1,2,3,4,5,6,8,11,12,
and 16 working threads and with 1,2,3 and 4 active CPU
cores. Figure 6 compares predicted and measured render-
ing times in each of these configurations. The relative error
varies in ε ∈ (0.003, 0.097) with the average error across all
the configurations ε = 0.032.

Our experiments demonstrate the ability of our frame-
work to predict performance of a program across different
hardware configurations. This does not yet translate into
an accurate prediction of the program running on a totally
different hardware. Differences in characteristics of CPU,
memory, and cache will result in different execution times
for individual CFs. Nevertheless, it opens a path for such a
prediction because CF timing can be estimated analytically
or using microbenchmarks on the target architecture.

Apache Tomcat as a web server. Apache Tomcat is
a widely used web server and Java servlet container. In our
experiments Tomcat relies on a single blocking queue to pass
incoming HTTP requests to a fixed-size thread pool. The
performance of the Tomcat was influenced by the size of the

thread pool and by the the workload intensity (the num-
ber of requests the server receives in a second, req/s). The
performance metrics are response time R and throughput T .

We used Tomcat to host about 600000 Wikipedia web
pages. We predicted performance of Tomcat with with 1,3,5,
and 8 working threads and workload intensity ranging from
48.3 to 156.2 req/s (measured on the server side).

The prediction results for R and T are depicted at the
Figure 7. The relative prediction error ε(T ) ∈ (0.001, 0.087)
with average error ε(T ) = 0.0121. In non-saturated configu-
rations throughput is roughly equal to the incoming request
rate, thus the relative error for saturated configurations is a
more informative accuracy metric: ε(Tsat) = 0.027.

The error for R is ε(R) ∈ (0.003, 2.452) and ε(R) = 0.269.
The relatively high error terms are attributed to fluctuations
of the page cache hit rate represented by k. According to
our measurements, mean k = 0.755 with standard devia-
tion σ(k) = 0.046. Overall, precise data collection proved
to be essential for accurate performance prediction. Intro-
ducing an artificial 15% bias in the value of k resulted in
ε(R) ∈ (0.015, 3.109) with ε(R) = 0.882. This experiment
demonstrates the importance of the accurate measurement
of CF resource demands.

In a web server setup Tomcat expresses a mixed behavior.
81% of computational resources consumed during processing
the HTTP request is the I/O bandwidth, and 19% is CPU
time. As a result, the single hard drive becomes the bottle-
neck that prevents performance from growing significantly
as the number of working thread increases. At the same
time, remaining CPU computations are parallelized across
four CPU cores, resulting in small but noticeable perfor-
mance improvement.

Apache Tomcat as a servlet container. Tomcat is
more frequently used as a servlet container. We used Tomcat
to host a web application that reads a random passage from
the King James bible, formats it, and converts into the PDF
using the iText [5] library.

The prediction results for R is depicted at the Figure 7
(T is not shown due to space limitations). The relative pre-
diction error ε(R) ∈ (0.000, 0.375) with the average error
ε(R) = 0.122. The error for T ε(T ) ∈ (0.000, 0.356) and
ε(T ) = 0.053, with ε(Tsat) = 0.099. The CPU time τCPU

fluctuates less than the demand for I/O bandwidth, which
leads to the lower prediction error.

The model correctly predicts the workload intensity at
which the server saturates. PDF conversion is a CPU-heavy
task, thus performance of the server is bounded by the num-
ber and performance of CPU cores. Since there are four
CPU cores available, the actual saturation point depends
on the number of threads. It ranges from 21.4 req/sec for a
configuration with 1 thread to 85.5 req/sec for 10 threads.

5.2 Modeling small- to medium-size programs
We built models of the following applications: Monte-

carlo (a financial application), Moldyn and Galaxy (scien-
tific computing applications), and Tornado (a Web server).
Although smaller in size, these programs express function-
alities peculiar to a wide range of multithreaded programs.
They implement thread interaction in different ways and use
a great variety of synchronization mechanisms to enforce a
correct order of computations across multiple threads. Table
3 present a summary on these programs and their models.

Montecarlo and Moldyn are parts of the Java Grande



Figure 7: Predicted and measured performance of Tomcat. Left: response time in a web server setup. Small
variation in demand for I/O bandwidth lead to large changes in the response time. Center: throughput in a
web server setup. Configurations leading to server saturation are detected accurately. Right: response time
in a servlet container setup. Consistent demand for the CPU time leads to an accurate prediction.

Table 3: Small- to medium-size programs and their
models

Montecarlo Moldyn Galaxy Tornado

Size, LOC 3207 1006 2480 1705
Number of probes 18 30 72 40
Number of CFs 17 72 124 88
Number of nodes
in the model 24 46 59 36
Mean error ε 0.062 0.083 0.075 0.262 (R)

0.010 (T )

benchmark [12] suite. Montecarlo simulates price of market
derivatives by generating a number of time series reflecting
prices of the underlying assets. Time series are generated
independently using a pool of working threads.

Moldyn simulates motion of argon atoms in a cubic vol-
ume. The time is discretized into small steps. During each
step (iteration) working threads compute forces acting on
atoms, and then the main thread updates positions of atoms.

Galaxy simulates the gravitational interaction of celestial
bodies using the Barnes-Hut [8] algorithm. During each iter-
ation the main thread rebuilds the octree, the pool of “force
threads” computes forces and updates positions of bodies,
and the pool of “collision threads” detects body collisions.

Tornado is a simple web server, whose structure and be-
havior are described as an example in the Section 3. Unlike
Moldyn, Montecarlo, and Galaxy, which engage the CPU-
intense computations, Tornado workload is dominated by
disk I/O operations.

One configuration parameter common to all these pro-
grams was the size of their thread pools. For Montecarlo,
Moldyn, and Galaxy we experimented with 1,2,3,4,8,10,12,16
working threads (Galaxy parameters included the number
of both force threads and collision threads). Parameters of
Tornado were the number of working threads (1,3,5, and 10)
and the workload intensity (ranged from 19.8 to 99.6 req/s).
The relative prediction error for each program is provided
in the Table 3 (detailed results are not shown due to space
constraints).

6. DISCUSSION AND LIMITATIONS
Although our framework is capable of building perfor-

mance models automatically, it imposes certain limitations
on the programs we can model. First, our high-level models
represent computations as task processing. This approach
does not cover all possible programs, but covers most pro-
grams of interest for performance purposes.

Second, during data collection we use a single representa-
tive configuration, where the transition probabilities δ and
CF parameters Π would be similar to δ and Π of a larger set
of configurations. This requires the usage patterns for the
program, such as the image resolution in Sunflow or proba-
bilities of accessing individual web pages in Tomcat, to re-
main similar across the configuration space. Changing usage
patterns may require reconstructing the model. One solu-
tion to this problem would be recollecting δ and Π directly
from the running program. Another solution is building a
hybrid of statistical and simulation model, where usage pat-
terns are described using metrics X ′, and the dependency
(δ,Π) = f(X ′) is approximated statistically.

Third, our current framework requires programs to imple-
ment multithreading using the well-defined synchronization
operations. We do not see it as a major limitation as modern
programming frameworks offer rich libraries of locks which
programmers are encouraged to use [6]. Furthermore, the
semantics of locks implemented using low-level constructs
can be discovered using analysis described in [32].

Third, our models do not explicitly simulate calls made by
the program to other systems, such as Web services or SQL
databases. Timing of these calls can be simulated using sta-
tistical models. Alternatively, these systems can be modeled
using their own performance models, combined into a model
of a distributed system using INET or NS2/3 simulators.

Next, our models simulate memory operations as CPU
computations. This didn’t affect prediction accuracy in our
experiments, but accurate modeling of certain programs or
workloads may require explicit simulation of memory oper-
ations and corresponding OS and hardware components.

Finally, our framework currently does not include a net-



work model, our static analysis and instrumentation meth-
ods are only implemented for Java applications, and we use
clock time as a substitute for actual CPU time.

7. RELATED WORK
We divide the related work into two categories: (i) perfor-

mance modeling and (ii) automated program analysis and
model construction.

(i) At the high level the performance of the system can be
represented as a function y = f(~x), where ~x is the configu-
ration and y is the performance of the system.

Analytic models explicitly represent this dependency us-
ing a set of equations. An analytic model was used to predict
the performance of the DBMS buffer pool [28]; the reported
relative errors are ε(T ) ≤ 0.1 and ε(R) ∈ (0.33...0.68). Ana-
lytic models were employed to study performance of certain
multithreaded design patterns [37], and as a central element
of the autonomic data center [10].

Building analytic models requires strong mathematical
skills and is hard to automate. Moreover, analytically mod-
eling even a simple multithreaded system is challenging [25].

Statistical models do not explicitly formulate the function
y = f(~x). Instead, the system is executed in a number of
configurations ~x1, ..., ~xn ∈ X, where performance measure-
ments y1, ..., yn ∈ Y are collected. Then some statistical
method is used to approximate the dependency Y = f(X).

Statistical models were used to predict performance of
Hadoop tasks [17], SQL queries [14], and scientific applica-
tions running on a grid [24] with relative error ε ∈ (0.01,...,0.25).
CART trees predict performance of the SSD disk with ε ∈
(0.17, ..., 0.25) [19] and the traditional hard drive with ε ∈
(0.17, ..., 0.38) [40]. However, collecting the training set (X,Y )
requires running the system in many different configura-
tions, which is overly time-consuming and costly. The num-
ber of executions can be somewhat reduced by optimizing
the search through the configuration space [41] or by com-
plex program analysis [13]. Still, such experimentation may
not be feasible on a production system.

Queuing networks, Petri nets, and their extensions can
model complex behavior, but their construction requires ex-
tensive information about the system.

The Layered Queuing Network (LQN) represents the sys-
tem as a hierarchy of layers, where each layer includes both
a queue and a service node. LQNs can be solved analytically
and are particularly useful for simulation of distributed sys-
tems, where their accuracy reaches ε ≤ 0.24 [42],[34]. How-
ever, analytic modeling of complex threading behavior with
LQN [16] may be challenging. Palladio Component Models
(PCM) is another approach to simulation where the system
is divided into a number of interconnected components [9].

Colored Petri nets (CPN) extend the traditional Petri nets
by allowing multiple types of tokens. In [30] CPN predicted
performance of a parallel file system with ε ∈ (0.2...0.4),
and in [35] CPN was used to simulating the complex locking
constructs in a program with ε ∈ (0.0...0.2).

Existing models such as CPN can simulate multithreaded
systems to some extent. But typically they model a single
aspect of the system’s behavior, such as locks, an OS com-
ponent, or a piece of a hardware. This limits applicability of
these models to a specific scenario. Instead, our models sim-
ulate many factors that influence performance of a system:
queuing, synchronization operations, and simultaneous us-
age of hardware by threads. This allows us to build accurate

models of various multithreaded programs and workloads.
(ii) There is a significant amount of work on automated

analysis of parallel an distributed programs. The THOR
tool combines kernel and user-mode instrumentation to un-
derstand and visualize relations between the Java threads
and locks [39]. In [32] the dynamic analysis was used to
understand and visualize locks in a multithreaded program.
The ETE framework uncovers the task flow through the dis-
tributed system using the correlation variables [18]. The
Magpie performs the same task for a parallel program by
tracking invocations of key API functions [7].

Program analysis techniques are also used to automati-
cally construct performance models. LQNmodels of message-
passing programs were automatically built by recovering
the request flow from the application trace [26]. A PCM
model of the distributed EJB application was constructed
using program instrumentation; it demonstrated accuracy
ε ∈ (0.1...0.2) for the CPU-bound workload [11]. The PACE
framework [31] uses static analysis to automatically build
performance models of MPI applications with ε <= 0.1
[21]. In [43] authors construct models of distributed sci-
entific computing applications with ε ∈ (0.02...0.3).

However, automated construction of performance models
is mostly limited to distributed and message passing pro-
grams. Accuracy of these models can decrease rapidly if the
program performs complex threading operations. For ex-
ample, the accuracy of the model [43] drops to ε = 0.5 for
programs engaged in synchronization operations.

We address this limitation by developing innovative static
and dynamic analyses for building performance models of
multithreaded programs. Our analyses automatically dis-
cover resource demands and thread interactions and trans-
late this information into an accurate model of the system.

The great variety in the types of performance models, pro-
grams, and workloads makes it difficult to establish a com-
mon baseline to compare accuracy of performance models.
Thus we compare our approach to a wider group of models,
including analytical and statistical models, and models of
distributed systems. These models have ε ∈ (0.02, ..., 0.15)
for CPU-bound workloads [11],[24],[34],[42],[21],[43], and ε ∈
(0.12, ..., 0.34) for I/O-bound workloads [40],[14],[19],[28],[29].
Our models have accuracy ε ∈ (0.032, ..., 0.122) for CPU-
bound and ε ∈ (0.262, ..., 0.269) for disk I/O-bound work-
loads, which is comparable to the state of the art.

8. SUMMARY
In this paper we presented a novel methodology for au-

tomatic modeling of complex multithreaded programs. Our
models accurately simulate synchronization operations and
hardware usage by multiple threads. At the same time, our
framework builds program models automatically and does
not require running the program in many configuration.

We verified our approach by building models of various
Java applications, including large industrial programs. Our
models predicted performance of these programs across a
range of configurations with a reasonable degree of accuracy.

Our next steps will be addressing limitations of our mo-
dels discussed in Section 6, which will allow predicting per-
formance for a wider range of applications and workloads.
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