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ABSTRACT
Predicting the performance of a computer program facili-
tates its efficient design, deployment, and problem detection.
However, predicting performance of multithreaded programs
is complicated by complex locking behavior and concurrent
usage of computational resources. Existing performance mo-
dels either require running the program in many different
configurations or impose restrictions on the types of pro-
grams that can be modeled.

This paper presents our approach towards building perfor-
mance models that do not require vast amounts of training
data. Our models are built using a combination of queuing
networks and probabilistic call graphs. All necessary infor-
mation is collected using static and dynamic analyses of a
single run of the program. In our experiments these mod-
els were able to accurately predict performance of different
types of multithreaded programs and detected those config-
urations that result in the programs’ high performance.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
systems—Modeling techniques; D.2.9 [Software Engineer-
ing]: Management—Software configuration management ; I.6
[Computing Methodologies]: Simulation and Modeling

General Terms
Performance

Keywords
Simulation, performance, modeling, configuration

1. INTRODUCTION
Performance is an important characteristic of any software

system. It depends on various factors, such as the architec-
ture of the program, properties of the underlying hardware,
and characteristics of the system’s workload. The perfor-
mance is also strongly influenced by values of configuration
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options of the program. Examples of such options can be the
size of the internal cache for input-output (I/O) operations
or the number of working threads.

Proper understanding of how the configuration of the sys-
tem affects its performance is essential for many applica-
tions. Usually this requires building a performance predic-
tion model of the system. This model should be able to
predict performance characteristics of the system for dif-
ferent configurations, which include variations in workload,
configuration options, and characteristics of the hardware.

Performance prediction models can be useful in various
scenarios. During the program’s development, such mod-
els can estimate the program’s performance characteristics
and thus help detecting potential problems early [11]. Once
the program is deployed, performance models can discover
configurations of the system that result in its high perfor-
mance on a particular platform. Similarly, models may be
used for answering “what-if” questions, such as “how will
the throughput change if I doubled the number of working
threads?”

Performance models become a central component in build-
ing self-configuring and autonomic systems [15]. Here pre-
diction results are used to dynamically reconfigure the sys-
tem to achieve a higher performance. Performance predic-
tion can be used to schedule tasks on high-performance com-
puter systems [12] and large clusters [7]. This allows for both
reducing the running time of the program and increasing
utilization of the computation resources. Finally, the perfor-
mance model can be useful in detecting run-time problems
with the application. A large discrepancy between predicted
and actual performance measurements may be a sign of an
anomalous behavior of the system.

Building models of multithreaded programs is not easy.
It requires carefully modeling the complex locking behavior
of the application and concurrent usage of various compu-
tational resources such as the CPU and the I/O subsystem.
As a result, existing performance models either impose re-
strictions on the types of programs that can be modeled
or require collecting vast amounts of data about the per-
formance of the system in different configurations. Such
limitations often make these models impractical.

Our work attempts to overcome these limitations. We de-
velop an innovative technique that requires less data to build
the model and allows modeling of a wider range of applica-
tions. These models can predict performance of multithre-
aded programs running in various configurations under the
established workload. Our models also predict performance
of individual program components and utilization of compu-



tational resources, which facilitates performance analysis of
the system and bottleneck detection.

In our research we use a combination of static and dy-
namic analyses to collect information about the program.
We analyze the program, instrument it at the key points,
and run it in a certain configuration to collect the necessary
data.

We use a the discrete event approach to simulate com-
puter programs. At the high level we represent a program
using a queuing model whose queues correspond to queues
and buffers in the program, and whose servers correspond
to the program’s threads. Each thread is simulated using
a probabilistic call graph whose vertices correspond to frag-
ments of the program’s code.

For modeling purposes we split the program into frag-
ments; each fragment performing an elementary operation
such as CPU-bound computations, I/O operations, synchro-
nizations, buffering, etc. These fragments correspond to ap-
propriate components in the model. This approach contrasts
with less generic models, where the program is viewed as a
combination of high level constructs specific to the kind of
the program being simulated, for example an MPI call.

As a result, our models allow simulating almost any multi-
threaded program. To further increase flexibility of the mod-
eling, components that simulate underlying OS and hard-
ware are independent of the model of the program. To ver-
ify feasibility of our approach we have built models of the
simple scientific computing application and the web server
running under the Linux OS.

Our work extends the existing state of the art in the area
of performance modeling in several aspects:

• our modeling framework is not restricted to simulation
of a single class of multithreaded applications and can
be used to simulate a wider range of programs;

• we propose a simple yet powerful technique to model
I/O operations in the program, including simulation
of both hardware and software components of the I/O
subsystem;

• we pay strong attention to the proper simulation of the
concurrent usage of computation resources.

The remainder of this paper is organized as follows. Sec-
tion 2 surveys the related work in the area. Section 3 outlines
the general approach towards building the model. Section
4 describes the model itself. Section 5 focuses on data col-
lection. Section 6 presents experimental results. Section 7
concludes and outlines directions for future work.

2. RELATED WORK
Existing performance models can be divided into three

main classes according to the method they use: analytical
models, black-box models, and simulation models. Despite
implementation differences, at the high level all of them rep-
resent the system as a function y = f(x). Here x are met-
rics describing system’s configuration and workload, and y

is some measure of the system’s performance.
Analytical models explicitly specify the function f(x) us-

ing a set of formulas. N. Bennani and A. Menasce [15] used
analytical model in the controller for the autonomic data
center. E. Thereska and D. Narayanan [23], [16] used such
models to predict performance of the DBMS depending on

the size of the buffer pool. These studies report relative er-
ror ε ≤ 0.1 for predicting throughput and ε ∈ (0.33, 0.68)
for predicting response time. However, it is not clear if the
presented methodology can be easily applied to other appli-
cations or if it can incorporate other parameters.

Analytical models are compact and expressive; however,
their development requires considerable mathematical skills
and deep understanding of the system. Moreover, complex
behavior is difficult to describe with analytical models.

Black-box or statistical models are used to alleviate these
problems. They utilize no information about the internal
structure of the system and do not formulate the function
y = f(x) explicitly. Instead, the program is executed in
different configurations and its performance is measured.
Then some machine learning technique is used to learn the
y = f(x) dependency from the data.

In particular, B. Lee et al. [14] used linear regression and
neural networks to predict performance of the linear equa-
tion solver running on the grid; they report ε ∈ (0.02, 0.11).
A. Ganapathi et al. [7] used a technique based on the k-
NN method to predict performance of the Hadoop queries.
They achieved high correlation (R2 =0.87–0.93) between
predicted and actual running times. Their work [8] uses
machine learning techniques to predict the execution time
of queries in the DBMS.

Disadvantages of the black-box models are the need for
large amount of data to train the model and the lack of
flexibility. The system must be run in many different con-
figurations in order to collect sufficient amount of training
data. Any change to the software or hardware of the sys-
tem requires re-training the whole model [20]. Furthermore,
these models can predict only high-level performance met-
rics and cannot give an insight into details of the system’s
performance.

There are attempts to work around these limitations. In
particular, large amounts of data can be available directly
from a user base [21] or from a large number of runs [19].
Unfortunately, these solution works only for very popular
applications and can raise privacy concerns. Chun et al.
[6] uses internal program features instead of configuration
metrics x to build performance models of CPU-bound pro-
grams. This allows reducing the amount of training data for
the model, but requires complex program analysis.

Simulation is another popular approach towards perfor-
mance modeling. The structure of simulation models follows
the structure of the system, where components of the system
directly correspond to the components of the model. Build-
ing these models doesn’t require as much data as black-box
models, but requires an expert knowledge of the system.

An example of a simulation model is the PACE framework
[18] that predicts performance of CPU-bound applications
running on a high-performance computer system. PACE
was used to predict the execution time of the nreg image
processing application with the ε <= 0.1 [12]. However,
PACE is limited to simulation of MPI-based programs.

One traditional tool used for simulation is Petri networks.
Nguen and Apon [17] rely on Petri nets to predict through-
put of Linux file system with ε ∈ (0.12, 0.34). Gilmore et al.
[9] use PEPA networks, a combination of Petri network and
PEPA algebra, to build a model of a secure Web service.

Another well-established simulation methodology is queu-
ing networks, which are extensively used for performance
modeling of computer networks. However, van der Mei et al.



[24] used queuing network to study impact of networking pa-
rameters at the performance of the web server. IRONModel
[22] simulates performance of the experimental cluster-based
storage system using the combination of queuing model,
black-box, and analytical models.

Layered Queue Networks (LQN) extend the queuing net-
works by introducing the hierarchy of the model compo-
nents. Xu et al. [27] uses LQN to build a model of a dis-
tributed JavaBeans application with ε = (0.02, 0.25). Israr
et al. [11] attempts to automatically build LQN models of
commercial message-passing programs from their traces.

Petri nets, queuing models, and LQN are successful in pre-
dicting performance of computer networks and distributed
programs at the high level. Unfortunately, these models in
their classical form fail to properly simulate complex syn-
chronization operations and concurrent usage of computa-
tional resources such as CPU and hard drives by multiple
threads [26]. Consequently, their applicability to modeling
multithreaded applications is limited. In our work we at-
tempt to overcome these limitations.

3. MODEL DEFINITION
For the purpose of simulation we represent computations

performed by the program as request processing. We denote
a request as something the program has to react to. The
program processes the request by performing certain opera-
tions. The performance of the request processing system can
be described by various metrics, such as the response time
R (an overall delay between request arrival and its comple-
tion), throughput T (the number of requests served in the
unit of time), or the number of requests dropped.

This approach naturally allows simulating reactive sys-
tems which constitute a majority of modern computer pro-
grams. For example, in the web server, the request corre-
sponds to an incoming HTTP connection. The processing of
the request includes reading a web-page from the disk and
sending it to the user. In the model of the UI application,
e.g. a text editor, the request corresponds to a keystroke
or a mouse move. The response of the application includes
updating its UI and underlying data. Scientific applications
can be also simulated in this way. Here, the request can
correspond to the object or set of objects in the program.
The program responds to the request by performing compu-
tations and sending the request to the next component in
the system.

We employ a two-tier simulation of computer programs.
At the high level, we simulate the program using a queuing
network model [13]. At the low level, we simulate threads
as probabilistic call graphs. Both types of models are built
using discrete-event principles, where the simulation time is
advanced by discrete steps and the state of the system does
not change between time advances.

The high-level model explicitly simulates the flow of the
request as it is being processed by the program, from its ar-
rival to completion. It is a queuing network model where
queues correspond to program’s queues and buffers, and
servers correspond to the program’s threads.

Our model differs from the classical queuing networks.
First, it does not restrict the structure and properties of the
model, such as the number of service nodes n or parameters
of the arrival process λ. Second, the server nodes are models
on their own that simulate the program’s threads. Finally,
the high-level model does not explicitly define service de-

Figure 1: A high-level model for a web server

mand for requests; these are simulated by the lower-level
thread models. Nevertheless, the high-level model is capa-
ble of collecting the same performance measures as queuing
models, such as R, T , or the number of requests in the sys-
tem N .

Figure 1 provides a (somewhat simplified) example of a
high-level model for a multithreaded web server. The server
works as follows: when the incoming HTTP request arrives,
the server calls accept() to open a socket for communicat-
ing with the client. The request is placed into the queue
for incoming connections. Once one of the working threads
becomes available, it fetches the request for processing from
that queue. The thread verifies that the requested page ex-
ists, reads it from the disk and sends it back to the client.
When processing of the request is complete, the thread closes
a connection and fetches another request from the queue.

The elements of the high-level model reflect basic stages
of processing the request by the web server. The request
itself corresponds to the socket ID. It is created by a re-
quest source, which corresponds to the accept() call in the
server’s code. Correspondingly, the server node (depicted
as a circle) denotes a working thread. The server node it-
self is implemented as a lower-level thread model. Once the
processing is over, the request is sent to the sink, which
corresponds to closing the client socket by the server.

Lower-level thread models simulate delays that occur in
threads when they process requests. Thread models are im-
plemented as probabilistic call graphs, whose vertices S cor-
respond to the pieces of the thread’s code – code fragments.
A special vertex s0 ∈ S is a starting code fragment, which
is executed upon the thread start. Edges of the graph rep-
resent a possible transition of control flow between the code
fragments. Probabilities of these transitions are defined with
a mapping δ : S → P (S).

We distinguish three basic types of code fragments: com-
putation, I/O, and synchronization fragments. These frag-
ments are represented with vertices of the corresponding
type in the call graph. Furthermore, we define special ver-
tices sin and sout to communicate with the higher-level queu-



ing model. The input vertices sin fetch requests from the
queues of the high-level queuing model. Output vertices sout
generate requests and send them to the queuing model.

Execution of each code fragment results in the delay τ .
Whereas the call graph structure < S, s0, δ > does not gen-
erally change in time, execution times for code fragments
depend on various factors, such as the degree of parallelism
of the program and characteristics of the underlying hard-
ware. For example, consider multiple threads that perform
equal amount of CPU-intense computations. If the number
of threads is bigger than the number of CPUs, the amount
of time required for each thread to finish computations will
be higher than if that thread was running alone. The same
logic applies to I/O operations: the amount of time required
for an I/O operation to complete strongly depends on the
number and properties of other I/O operations occurring at
the same time.

As a result, instead of specifying the exact time τ required
for each code fragment to finish, we rather define a set of
parameters Π of that code fragment. In turn, Π will be used
to calculate τ during the model’s runtime.

This necessitates modeling of the underlying hardware
and the Operating System (OS). This model will track Q(t)
– the state of the whole simulation at each moment of time
t. Thread models use this OS/hardware model to compute
τ as a function τ = f(Π, Q(t)). We have developed models
of the CPU/OS thread scheduler and the disk I/O subsys-
tem that compute τ for computation fragments and disk I/O
fragments correspondingly.

Different types of code fragments are described by differ-
ent sets of parameters. A computation fragment is described
by a parameter set Πcpu = {τcpu}, where τcpu is the CPU
time for that fragment. The CPU time is the time neces-
sary to execute the code fragment if it was running on the
CPU uninterrupted. A disk I/O fragment is described by
Πdisk = {dio1, ..., diok}, where {dio1, ..., diok} are low-level
disk I/O requests spawned by the OS for that I/O fragment.

4. MODEL BUILDING
Using the methodology described above, we have devel-

oped a framework to simulate multithreaded programs writ-
ten in general-purpose programming languages such as C,
C++, or Java. We do not restrict ourselves to modeling
programs developed using a certain framework (e.g. MPI).
We rather develop a generic approach that can be extended,
if necessary, to support different frameworks for parallel pro-
gramming. Nevertheless we pose several important assump-
tions on the systems we can simulate. First, we do not pre-
dict performance characteristics for each individual request.
Instead, we predict average performance of the program for
a given workload, which can be a mix of requests with dif-
ferent characteristics. Second, we assume that transition
probabilities δ remain unchanged across the configuration
space of the program. This, in turn, might imply that prop-
erties of incoming requests must also remain unchanged in
time.

Furthermore, there are limitations caused by the simula-
tion framework in its current state. First, we assume there is
no other significant computation or I/O activity in the sys-
tem, except the program being simulated. Second, currently
we can simulate programs running only on the commodity
hardware, such as a desktop PC or a general-purpose server.

However, these limitations can be alleviated by improving
our framework.

We rely on the OMNET [1] simulation framework to build
our models. OMNETmodel consists of interconnected blocks
communicating using messages. Internally, blocks and mes-
sages are implemented as C++ classes. Although OMNET
provides general framework for developing those entities, it
is a responsibility of the model developer to implement de-
sired functionality in blocks and messages.

High-level and low-level models contain different types
of blocks. High-level models contain blocks that represent
request sources, sinks, queues, threads, and program-wide
locks (barriers, critical sections etc). The high-level model
also contains blocks simulating the I/O subsystem and the
thread scheduler. Low-level (thread) models consist of com-
putation blocks, I/O blocks, blocks that simulate calls to
locks, blocks that read/write data from the high-level model,
and dispatch blocks that implement transition probabilities
δ.

Each block has a set of parameters that generally rep-
resents properties of the corresponding program structures.
Values of the block parameters are obtained during the data
collection stage. Since values of parameters for a block repre-
senting a code fragment can fluctuate across different execu-
tions of that code fragment, we treat them as a distributions
P
Π.
The high-level model creates requests, queues them, and

sends them to low-level thread models for processing. The
request itself is represented as a request message flowing
from one block to another. The request normally corre-
sponds to some data item in the real-life program, such as
a file descriptor, socket ID, a class instance, or a handle. In
the high-level model threads appear as ”black boxes” with-
out any notion of their internal structure. Each thread is
represented as a separate block, such that, if the program
has 8 working threads, it has 8 such blocks.

The Figure 2 shows the high-level model for the Galaxy –
a simple scientific application. Here requests correspond to
Java objects, and arrows depict how requests flow between
the model’s blocks. The model contains two working threads
that interact through two queues, and one main thread.

Details of the thread are simulated by the lower-level thread
models. Here the thread is represented as a group of blocks
that corresponds to the vertices S of its probabilistic call
graph. Execution flow in a thread is also simulated by the
message passing. When the model of the program is started,
the computation flow message (CFM) is created for every
thread and is sent to its initial block s0. Then the compu-
tation flow message starts traveling through the call graph
of the thread, which simulates the execution of the actual
thread. Flow of the message is controlled by the dispatch
blocks that reroute the message to other blocks in the model
according to the probabilities δ.

The Figure 3 shows thread models for the Galaxy. Here
arrows depict flow of the CFM between the threads’ code
blocks. The CFMs are created using the sourceOnce blocks.
It must be noted that in addition to blocks that represent
fragments of the program’s code, thread models also contain
service blocks used to control simulation and collect results.
In particular, the setTimer/readTimer blocks measure the
time necessary for the CFM to travel between those, which
allows predicting execution time for fragments of the pro-



gram. The stopper block stops the simulation after receiv-
ing the predefined number of CFMs.

To pass the request message in and out of the thread we
rely on a special group of blocks in the thread model – reader
and writer blocks that implement sin, sout actions of our for-
mal model. Once the CFM reaches the reader block, that
block fetches the request message from the queue or from
other source in the high-level model. If no request is avail-
able, the reader either delays the CFM until the request
becomes available, thus effectively blocking the execution
of the thread (which might correspond to a locking behav-
ior in the producer-consumer pattern), or just reroutes the
CFM. Correspondingly, when the CFM reaches the writer
block, the block outputs the request message to the high-
level model. The thread model shown at the Figure 3 (right)
has a pair of reader/writer blocks that access a queue in the
high-level model.

4.1 Simulating Delays in Thread Execution
As the CFM travels through the thread model, various

blocks can delay its passage, thus simulating delays τ that
occur during the thread execution. These delays occur be-
cause of CPU-intense computations, I/O activities, or when
execution of the thread is blocked by synchronization mech-
anisms such as critical sections or semaphores.

To simulate these delays, we employ two groups of blocks:
caller blocks and central blocks. Different types of caller
and central blocks are used to simulate different types of
delays. However, all of them interact according to the same
principle.

Caller blocks are parts of the thread model. When the
caller block receives a CFM, it delays that message and no-
tifies the corresponding central block using a separate mes-
sage. The exact type of that message depends on the type
of the caller/central block pair. The parameters of the mes-
sage are sampled from the P

Π – distribution of parameters
for the caller block.

The central block is a part of a high-level model. Once
it receives the message from the caller block, it updates the
internal state of the model Q(t). Then, it uses message
parameters and the Q(t) to simulate the delay τ . Once the
delay has passed, the central block sends the message back
the caller block. The caller block in turn sends the original
CFM to the next block in the thread model.

4.1.1 Simulating synchronization delays
To simulate high-level synchronization primitives in the

program the modeling framework employs a wide range of
different block types. Every lock in the program is repre-
sented by a corresponding central block. Parameters of the
central block correspond to properties of the lock. For ex-
ample, the barrier block has one parameter – the capacity of
the barrier. Correspondingly, caller blocks represent calls to
these locks. Every type of synchronization primitive is rep-
resented by different centra/caller block pair. For example,
the barrier is represented by a SyncBarrier central block;
calls to that barrier are represented by SyncBarrier await
caller blocks.

These blocks explicitly simulate the functioning of the
lock. When the caller block sends the synchronization mes-
sage to the central block, the central block updates its in-
ternal state accordingly and makes a decision if the calling
thread should block or not. If the thread should not block,

the central block sends the synchronization message back to
the caller immediately. However, if the central block decides
that the calling thread must wait, it delays sending the syn-
chronization message back until the caller can be unblocked.

The high-level model shown at the Figure 2 contains four
central blocks that represent barriers and one central block
that represents the critical section. Correspondingly, the
thread models at the Figure 3 contain caller blocks that call
these central blocks.

4.1.2 Simulating Computations
To simulate delays that occur due to CPU-intense compu-

tations the model uses a combination of computation blocks
(caller blocks) and a CPU/Scheduler block (a central block).
In addition to simulating delays, the CPU/Scheduler also
predicts CPU utilization by the program.

When the computation block sends the computation mes-
sage to the CPU/Scheduler block, it passes a τcpu as a pa-
rameter of that message. τcpu is sampled from the P

Π

cpu

for the corresponding code fragment. The CPU/Scheduler
block simulates the CPU with the given number of cores and
the round-robin OS thread scheduler with equal priority of
all the threads. Once the CPU/Scheduler receives a mes-
sage from the computation block, it puts that message into
the queue of “ready” threads. When one of the computa-
tion cores of the simulated CPU frees, the CPU/Scheduler
takes the first message out of the “ready” queue and simu-
lates computations by introducing a delay whose length is
equal to min(τcpu, OS time quantum). After the delay is
expired, the CPU/Scheduler either sends the message back
to the origin block (in case computations are complete) or
places it back into the“ready”queue, where it awaits another
time quantum. The length of the time quantum is sampled
from the distribution that represents quantum length of the
actual Linux thread scheduler.

In our example the high-level model contains the cpuSched-
uler block, which implements the model of the CPU/ Sche-
duler. Each of thread models contain one computation block
that call cpuScheduler.

4.1.3 Simulating Disk I/O
To simulate delays that occur because of the disk I/O

the model uses a combination of DiskIOOperation (caller
block) and DiskIOModule (central block). DiskIOModule
simulates the disk I/O subsystem of a computer and also
predicts disk utilization.

DiskIOOperation represents a disk I/O fragment. When
the DiskIOOperation block receives the CFM, it retrieves
the number k and parameters of the low-level I/O mes-
sages {dio1, ..., diok} from the distribution P

Π

disk. In the
case of the cache hit the k = 0, and the DiskIOOpera-
tion immediately sends the CFM to the next block. Oth-
erwise the DiskIOOperation sends k disk I/O messages to
the DiskIOModule block. Each message represents a low-
level I/O request dioi, i ∈ (1, ..., k). These messages are sent
to the DiskIOModule sequentially. If the message repre-
sents a synchronous operation, the DiskIOOperation waits
for its completion before sending the next disk I/O mes-
sage. Otherwise it sends the next disk I/O message to the
DiskIOModule immediately.

The DiskIOModule combines models of the I/O schedu-
ler and the hard drive. The disk I/O message is initially
sent to the model of the I/O scheduler. If the hard drive



is idle at the moment, the I/O scheduler model sends the
request directly to the hard drive model. Otherwise, the
disk I/O message is placed in the queue that simulates the
request queue of the actual I/O scheduler. When the hard
drive model becomes available, it fetches the next request
to be processed from that queue. The real I/O scheduler
orders requests according to the index of the disk block they
are accessing, but since this information is not known to
the model, the hard drive model fetches requests from the
random positions of the queue.

The model of the hard drive calculates the disk process-
ing time τdisk for the request and delays the request for
that time. However, τdisk depends on parameters of the re-
quest, such as the amount of data transferred, locality of the
operation (how close are disk sectors accessed by different
requests etc), and other factors. To account for those, the
model treats τdisk as conditional distribution P (τdisk|xdio),
where xdio are parameters of the I/O request. As for now
we use the type of the request (synchronous read, meta-
data read, read-ahead) as a parameter, since it implicitly
represents the locality of the I/O operation. In particular,
read-ahead requests usually do not require the disk seek op-
eration and, thus, have significantly shorter τdisk. Currently,
we are working on incorporating other request parameters
to increase the overall accuracy of simulation.

4.2 Simulating OS limits
OS can impose a variety of limits on the program such as

the maximum number of open file descriptors. These limits
can severely affect the program’s behavior and can be viewed
as additional parameters of the system.

To simulate OS limits we have also implemented a combi-
nation of a central block and caller blocks. A code fragment
that attempts to acquire some resource (such as a call to ac-
cept() or open() functions that acquire a file descriptor) is
represented by a caller block. When the CFM arrives to the
caller block, the block calls an OSLimits central block and
requests to allocate an instance of corresponding resource.
OSLimits updates the state of the system and notifies the
caller if the resource was granted or not. The result of the
call is logged by the caller block for the further analysis.
Moreover, it can be used to reroute the CFM if the request
was denied, thus simulating the behavior of the real pro-
gram.

5. DATA COLLECTION
Building models of the multithreaded program requires

collecting following information about the program itself as
well as the underlying OS and the hardware:

• information on thread interaction in the program, in-
cluding synchronization mechanisms and request queues;

• probabilistic call graphs< S, s0, δ > for all the threads;

• parameters Π of individual code fragments;

• performance characteristics of the underlying OS and
hardware.

To collect this data we analyze the system, instrument it,
and run it in one specific configuration. This is a major ad-
vantage over the black-box methods, which require running
the program in a large number of configurations.

We utilize a mixed approach towards program analysis.
We manually analyze the program at the high-level to es-
tablish its structure and use automated solutions to obtain
the rest of the data.

During the manual analysis we determine the general se-
quence of operations that happen during the request pro-
cessing. First we identify synchronization mechanisms and
working threads. Then we analyze the threads’ code to de-
tect code fragments and determine their types. Next, we
instrument the program by inserting probes at the borders
of individual code fragments. Each probe is identified by the
unique ID, thus each code fragment can be uniquely iden-
tified by the pair of IDs of surrounding probes. Program
instrumentation completes manual analysis of the program.
The rest of the data collection is performed automatically.

To collect information on code fragments we run the in-
strumented program in one representative configuration. When
the probe is hit during the program’s execution, we record
CPU time τcpu and wallclock time τ for the code fragment.
Our instrumentation is very lightweight: every probe slows
the execution of the program in average by 1-2 microsec-
onds. To further decrease instrumentation overhead, we rely
on statistical sampling [10].

Once execution of the program has finished, the instru-
mentation log is analyzed automatically and the following
information is retrieved:

• τcpu for all code fragments, which forms PΠ

cpu;

• transition probabilities δ for each thread;

• τ for all code fragments;

• performance metrics of the program, such as the re-
sponse time R, throughput T etc.

τ and performance metrics (R, T ) are used solely for an-
alyzing simulation results and model debugging.

Unfortunately, the user-mode log does not include infor-
mation on I/O operations and page cache usage. To capture
this data we instrument following places of the Linux kernel
using the SystemTap framework [2]:

• start and end of the system call routines that can initi-
ate I/O requests, such as sys_read() or sys_stat();

• the generic_make_request() function, which inserts
the request for the low-level I/O operation into the
queue of the I/O scheduler;

• the blk_start_request() function, which is called when
the I/O scheduler passes a request to the physical de-
vice (a hard drive);

• I/O completion routines.

This instrumentation yields the following measurements:

• the number k and properties of I/O requests {dio1, ...,
diok} issued by the system call. Properties of the re-
quest include type of the request (synchronous read,
metadata read, read-ahead), and amount of data trans-
ferred. Altogether this data comprise the distribution
of parameters P

Π

disk for the corresponding disk I/O
fragment;



• τdisk: the amount of time required to process the I/O
request by the hard drive. τdisk is calculated as the
time difference between the call to the blk_start_-

request() and the completion routine. τdisk is used
to build the model of the I/O subsystem;

• τio: total time required for I/O request to complete,
which is the sum of the time spent in the I/O scheduler
queue and τdisk. τio is calculated as the time difference
between the call to the generic_make_request() and
the completion routine. τio is used to verify the model
of the I/O subsystem.

The number of I/O requests k is an important parame-
ter of an I/O code fragment, as it implicitly represents the
probability of hitting the OS page cache. As the value of k
varies for different requests, it should be considered a ran-
dom variable.

It has been shown [25] that the cache of a constant size
can be represented as a birth-death process. If there are
no changes in parameters of the incoming requests, such a
process converges to the equilibrium state, where the proba-
bility of a cache hit remains constant. Unfortunately, in the
general case the size of the OS page cache can vary. But if
our initial assumptions (absence of other significant activity
in the system and no rapid changes in the workload) hold,
the size of the OS page cache should not change. As a result,
the probability of cache hit should also remain the same.

To validate this claim we conducted a series of experiments
with the web server that uses stat() and read() functions
to access data on the hard drive. These experiments con-
firmed that, after serving a large number of requests, the
system reaches an equilibrium state and the distribution of
k does not change. This is an important observation as it
allows us to easily simulate the OS page cache. To bring
a system into an equilibrium state we issue a large number
(around 105) of “warm-up” requests prior to taking actual
measurements of k.

6. MODEL VERIFICATION
To test our approach for performance prediction we built

models of two multithreaded programs. These programs are
very different in their purpose, architecture, behavior, and
programming languages and thus can be representative for
a larger class of applications. The first program is Galaxy,
a CPU-bound scientific computing application. The second
program is tinyhttpd, a disk I/O-bound web server. Instru-
mented source code and models for these programs can be
downloaded from [3]. We have created other models which
are not presented here due to space constraints.

To estimate accuracy of the model we ran the program in
different configurations and recorded actual performance of
the program for each configuration. Afterwards we simulate
the program in same configurations and record predicted
performance. Then we calculate relative error ε between
measured and predicted performance metrics as

ε =
|measured− predicted|

measured

The higher is the relative error the worse is the accuracy of
prediction. For the ideal model that predicts the program’s
performance without any errors ε → 0.

All our experiments were conducted on a PC equipped
with an Intel Q6600 quad-core 2.4 GHz CPU, 4 GB RAM

and 160 GB hard drive running under the Ubuntu Linux
10.04 OS.

6.1 Galaxy: the n-body simulator
Galaxy is a simple Java scientific computing application

that simulates the gravitational interaction of multiple ce-
lestial bodies. Although mostly used as an educational ex-
ample, this program employs a variety of synchronization
techniques and is a good representative of a multithreaded
scientific application.

Galaxy uses a conventional approach to the problem of
n-bodies simulation. It discretizes time into small steps and
calculates movement of objects during the each such step.
To achieve good performance, the Galaxy implements the
Barnes-Hut [5] algorithm, which involves building an octree.
A single iteration of the Galaxy algorithm involves three
major actions in a strict order: calculating forces acting on
bodies and updating bodies’ positions; rebuilding the octree;
and checking bodies for collisions. The length of iteration
can be viewed as a response time R and thus represents the
most important performance metric of the Galaxy.

Galaxy uses multiple thread pools to speed up compu-
tations. The first thread pool (”force threads”) calculates
forces and updates positions of the bodies, while the sec-
ond thread pool (”collision threads”) detects body collisions.
Thread pools communicate through synchronized queues.
The ordering of operations is enforced by the main thread
of the program, which uses barriers to synchronize threads
in thread pools. The main thread is also responsible for
rebuilding the octree.

Configuration options of the Galaxy include two parame-
ters that directly influence performance of the program: the
number of force threads and the number of collision thre-
ads. To cover all the configurations that are adequate for
our hardware we experimented with 1,2,4,6,8,12 and 16 force
threads and collision threads. Overall configuration space
included 49 configurations, which includes all possible com-
binations of the number of force and collision threads.

We ran Galaxy in all 49 configurations. In every config-
uration Galaxy was used to simulate 10000 bodies for 1000
iterations (in all the experiments we assume that our test
workloads are representative). To get reliable measurements
of the program’s performance three runs were performed in
each configuration. Iteration lengths R were recorded dur-
ing each run; their mean value R was used as an actual value
of Rmeasured for each configuration of the Galaxy.

One noteworthy finding is that the Galaxy iteration length
depends mostly on the number of force threads, and only
slightly on the number of collision threads. This can be ex-
plained by the fact that force calculations are significantly
more expensive than the collision checks. However, the over-
all performance of the Galaxy highly depends on the number
of collisions. As simulation time advances, many objects are
getting merged during the collisions, so the Galaxy must
perform less computations. This observation is important
since the model must accurately simulate such a complex
behavior.

We manually built both high-level and thread models of
the Galaxy. The high-level model is shown at the Figure 2.
Upon model initialization requests are created by the fill-
Bodies block, which sends them to the positionsQueue. po-
sitionsQueue and forcesQueue are queue blocks that repre-
sent synchronized queues in the program. galaxy_forces-



Figure 2: OMNET model of the Galaxy (high-level)

thread and galaxy_collisionthread blocks represent the
force thread and the collision thread, while the galaxy_-

mainthread block represents the main thread of the pro-
gram.

Low-level thread models for the Galaxy are shown at the
Figure 3 (the model of the collision thread is not shown due
to the lack of space). The model of the main thread contains
four blocks that call corresponding barrier blocks of the high-
level model. wakeForces_await and wakeForcesDone_await

blocks are used to wake up/suspend force threads, while
wakeCollisions_await and wakeCollisionsDone_await do
same for the collision threads. The octreeBuild computa-
tion block simulates rebuilding the octree.

Figure 3: OMNET models of Galaxy: main thread
and force thread

The model of the force thread uses the queueForces-

Reader reader block to fetch requests from the forcesQu-

eue. Then the dispatchIfDeleted dispatch block simulates
a check if the body has been marked as collided with another
body. If the collision has occured, the corresponding request
is deleted and the CFM is sent back to the queueForces-

Reader. Otherwise the CFM is sent to the calcForcesPo-

sitions computation block that simulates calcuation of the
net force acting on the body. Next, the model outputs the
request to the positionsQueue using the queueCollision-

sWriter writer block and attempts to fetch a new request
from the forcesQueue. Once all the requests in the for-

cesQueue have been processed, the thread uses the wake-

ForcesDone_await caller block to notify the main thread.

Figure 4: Experimental results for the Galaxy

Finally, wakeForces_await block suspends the thread until
it is waken up by the the central thread during the next
iteration.

To define parameters for the low-level thread models we
instrumented Galaxy code with 29 probes and ran it in
the configuration with 2 force threads and 2 collision thre-
ads. In these experiments the probability of collision was
1.01×10−5, the mean value of τ cpu (octreeBuild) = 5.40×
10−3 sec, and τcpu (calcForcesPositions) = 4.33 × 10−5

sec.
We used the model to predict the iteration length of the

Galaxy in each configuration. Similarly, the model was ran
three times in each configuration and the average iteration
lengths was used as a predicted value Rpredicted. The com-
parison of actual and predicted iteration lengths is shown at
the Figure 4.

Table 1: Relative errors for predicting the Galaxy
iteration length

Num.
collision The number of force threads
threads

1 2 4 6 8 12 16
1 0.054 0.161 0.084 0.067 0.110 0.074 0.111
2 0.155 0.102 0.018 0.007 0.038 0.028 0.005
4 0.179 0.132 0.086 0.072 0.056 0.048 0.076
6 0.151 0.115 0.090 0.067 0.042 0.059 0.054
8 0.143 0.126 0.075 0.051 0.050 0.036 0.062

12 0.174 0.122 0.069 0.057 0.036 0.058 0.054
16 0.033 0.105 0.052 0.014 0.053 0.069 0.070



Table 2: Predicted average CPU utilization for the
Galaxy, %

Num.
collision The number of force threads
threads

1 2 4 6 8 12 16
1 100.0 102.1 103.1 103.1 103.1 103.1 103.1
2 189.5 197.0 201.0 201.0 201.0 201.0 201.0
4 342.9 368.3 382.4 382.4 382.6 382.4 382.5
6 343.0 368.2 382.5 382.4 382.5 382.4 382.5
8 342.9 368.3 382.4 382.4 382.4 382.4 382.4

12 342.7 368.2 382.3 382.2 382.3 382.1 382.2
16 342.6 367.9 382.1 382.1 382.0 382.1 382.1

The relative error varies in ε ∈ (0.002, 0.179) depending
on the program configuration. The average error measured
across all the configurations is ε = 0.073, which is compara-
ble to statistical prediction models [14], [6]. Relative errors
for all the configurations are listed in the Table 1.

These results convince us that the model predicts itera-
tion length of Galaxy with reasonable accuracy. Further-
more, the model locates those configurations that result in
the high performance of the program. In particular, it cor-
rectly points that the number of force processing threads
must be >= 4, while the number of collision threads has no
significant impact on Galaxy performance.

Table 2 provides the predicted CPU utilization values for
the Galaxy on the test system averaged over the whole run
(value of 100% denotes a full utilization of a single CPU
core). Note that on average Galaxy never fully utilizes all
four CPU cores. Although force calculations and collision
detections are prefectly parallelizable and can utilize all the
CPU cores, rebuilding the octree is not a parallelizable op-
eration. It is executed only by a main thread, which can
use only a single CPU core at a time. Information on CPU
utilization can be used to improve the Galaxy algorithm and
further tune configuration options of the program.

6.2 tinyhttpd: the web server
Predicting performance of the web server is a more com-

plex task since it involves simulating not only computations,
but also I/O operations. In our work we built the model of
a tinyhttpd multithreaded web server [4]. tinyhttpd is writ-
ten on C programming language. It is simple and compact,
which facilitates its analysis, but at the same time it is rep-
resentative for a large class of server applications.

When the tinyhttpd receives an incoming request, it puts
the request into the queue until one of its working thre-
ads becomes available. The working thread then picks the
request from the queue, retrieves the local path to the re-
quested file, and verifies its existence using a stat() function.
If the file exists, the thread opens it for reading. If the file
was opened successfully, the thread reads the file in 1024-
bytes chunks and sends them to the client. Otherwise it
sends the“Internal Server Error” response. Once data trans-
fer is complete, the working thread closes the connection and
picks up the next incoming request from the queue.

In our experiments we used the tinyhttpd to host 200000
static web pages from the Wikipedia archive. According to
the common practice, atime functionality was disabled to
improve performance of the server. We used the http load
software [6] to simulate client connections to our web server.
httpd load is running on a client computer (Intel 2.4 GHz

dual-core CPU, 4 GB RAM, 250 GB HDD) connected to the
server with a 100 MBit Ethernet LAN.

The main metric we used to measure the performance of a
web server was the response time R. We define R as a time
difference between accepting the incoming connection and
sending the response (more accurately – closing the com-
munication socket). In addition to R we also measured the
total throughput T and the number of error responses.

The configuration space of the web server includes two pa-
rameters: the incoming request rate (IRR) and the number
of working threads of the web server. By varying the IRR
we simulate behavior of the web server under the different
load. In our experiments we vary IRR from 10 requests per
second (rps) to 130 rps with the step of 10 rps. The number
of working threads is the only configuration parameter of
the web server itself that affects its performance. We run
the web server with 2, 4, 6 and 8 working threads.

As a result, the total number of different experimental
configurations is 13*4=52, which includes all the possible
combinations of the number of threads and incoming re-
quest rates. For each configuration we ran both the actual
program and its model and record average values of perfor-
mance metrics. During each run 10,000 requests were issued;
every run was repeated six times to get averaged results for
each configuration.

Depending on the values of IRR the web server has two
distinct states of operation (see Figure 5). For IRR ≤ 50 rps
the I/O subsystem is not fully utilized and the R is minimal
(R ∈ (10-20 ms)). IRR ≥ 60-70 rps result in the overload
of the I/O subsystem. Processing the request takes longer
time, and incoming connections start accumulating in the
web server queue. As a result, the web server is brought to
the point of the saturation, where it exceeds the OS-imposed
limit of 1024 open file descriptors (remember, each connec-
tion requires an open file descriptor). The server is unable
to open files on the disk for reading, and the number of error
responses increases. At this point the R reaches 14-17 sec.
and remains steady. The total throughput T , however, con-
tinues to grow as it does not distinguish between requests
that fail or return successfully.

One interesting observation is that the number of working
threads has a relatively small influence on R. This is ex-
plained by the fact that the performance of the web server
is largely determined by the performance of the I/O system,
and the I/O system (hard drive) can effectively carry out
only a single I/O operation at a time. As a result, the in-
crease in the number of parallel operations is negated by a
proportional increase in the average execution time for each
individual I/O operation. We believe this example illus-
trates necessity for the proper simulation of I/O operations,
as they often becoming a determining factor in the program’s
performance.

To build the model of the tinyhttpd, we instrumented its
code with 21 probes and ran it in the configuration with 4
threads and IRR=70 rps. Our model predicts the R for sta-
tionary states reasonably well (ε ≤ 0.30), but its accuracy
decreases at the point of transition (see Table 3). But since
the size of the transitional region is small, the average error
across all the configurations ε = 0.203. The total through-
put T is predicted highly accurately (ε ≤ 0.021), but in
order to correctly interpret T , one has to take into account
the number of error responses. Unfortunately, the model
predicts this metric with somewhat lower accuracy: at the



Figure 5: Experimental results for the tinyhttpd. top row: the response time R (logarithmic scale); middle
row: the throughput T ; bottom row: the number of error responses

transition point ε = 1 and average error ε = 0.214. How-
ever, the number of failures in the transition region is small
(≤ 10% of all the requests), so even the slight variation in
the actual number of failed requests significantly affects pre-
diction accuracy. We expect to further improve accuracy by
developing a more sophisticated I/O model. Nevertheless,
even with the current simple model our results are compa-
rable to those obtained from a more refined model of the
Linux I/O subsystem [17].

Furthermore, the model accurately predicts values of con-
figuration parameters where the transitional behavior occurs.
This result is important, since usually the goal of perfor-
mance models is not just to predict performance of the pro-
gram across all the possible configurations, but to find those
configurations that result in high performance.

The output of the model is not limited to the high-level
performance metrics such as R and T . It can predict exe-
cution time for individual code fragments or groups of code
fragments. In particular, for tinyhttpd it also predicts the
overall time required for the working thread to process the
request (ε ∈ (0.001, 0.340), ε = 0.074), time necessary to
complete for stat() (ε ∈ (0.044, 0.456), ε = 0.212) and
read() (ε ∈ (0.001, 0.539), ε = 0.151) calls. This enables
us to use the model for finding unobvious bottlenecks in the
program. For example in our case it was discovered that
a single stat() call can take as much time as reading the

whole file in 1kb blocks. Furthermore, the model produces
readings of hardware resource usage, such as average CPU
or hard drive load. Unfortunately, space limitations do not
allow us providing elaborated results for these metrics.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented our approach for modeling per-

formance of the multithreaded computer programs. We pay
special attention to simulating concurrent usage of the un-
derlying OS and hardware by multiple threads. As a result,
our models do not require extensive amounts of training data
and do not pose significant restrictions on the types of pro-
grams that can be modeled.

We implemented our methodology in practice by develop-
ing an extensive end-to-end framework for simulating multi-
threaded programs, which includes tools for data collection
and model building. Finally, we verified our approach by
building models of both CPU- and I/O-bound multithrea-
ded programs.

Our model accurately predicts the performance of mul-
tithreaded programs with a high degree of accuracy. The
model also allows predicting performance of individual pro-
gram components and usage of computation resources. More
importantly, our models accurately predict those configura-
tions of the program that result in its high performance.



Table 3: Relative errors for predicting the tinyhttpd performance metrics

Response time R

Num. threads Incoming request rate
10 20 30 40 50 60 70 80 90 100 110 120 130

2 0.098 0.073 0.083 0.184 0.448 0.981 0.570 0.115 0.059 0.070 0.050 0.018 0.037
4 0.081 0.050 0.092 0.182 0.366 0.981 0.543 0.118 0.046 0.068 0.042 0.013 0.038
6 0.080 0.033 0.093 0.233 0.145 0.927 0.448 0.083 0.025 0.041 0.011 0.007 0.063
8 0.068 0.010 0.126 0.275 0.415 0.550 1.555 0.005 0.000 0.011 0.011 0.005 0.078

Total throughput (including error responses) T

Num. threads Incoming request rate
10 20 30 40 50 60 70 80 90 100 110 120 130

2 0.003 0.003 0.015 0.004 0.022 0.013 0.051 0.016 0.009 0.061 0.043 0.018 0.039
4 0.004 0.003 0.016 0.004 0.022 0.003 0.051 0.020 0.002 0.056 0.034 0.005 0.045
6 0.004 0.003 0.016 0.034 0.020 0.034 0.042 0.023 0.002 0.032 0.002 0.002 0.057
8 0.004 0.003 0.015 0.003 0.023 0.040 0.045 0.023 0.008 0.031 0.004 0.000 0.071

Number of error responses
Num. threads Incoming request rate

10 20 30 40 50 60 70 80 90 100 110 120 130
2 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.684 0.482 0.281 0.263 0.199 0.214
4 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.690 0.411 0.249 0.202 0.180 0.203
6 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.566 0.265 0.104 0.199 0.102 0.136
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.366 0.068 0.159 0.011 0.037 0.066

These results encourage us to continue working on simula-
tion of computer programs. Most importantly, we plan auto-
mate building the models of programs. This would allow us
building models of complex applications such as industrial
web and DBMS servers, search servers and crowlers. As a
first step, we plan developing tools for automatic discovery
of I/O and synchronization routines in the program. This
would allow instrumenting the program’s code and building
probabilistic graphs of the working threads without human
intervention. As a more distant prospective, we plan to au-
tomate building high-level queuing models of the program.

Moreover, we investigate different approaches towards I/O
modeling. We plan developing a purely statistical model of
the disk I/O. This model should allow simulating various
types of the hardware, such as RAID arrays, and provide
higher accuracy. Similarly, we plan developing a model for
network I/O since, in certain scenarios, network delays can
become determinant of the program’s performance.
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