
An Integration Resolution Algorithm for Mining Multiple Branches in
Version Control Systems

Alexander Tarvo*

Brown University

Providence, RI, USA

alexta@cs.brown.edu

Thomas Zimmermann, Jacek Czerwonka

Microsoft Corporation

Redmond, WA, USA

{tzimmer, jacekcz}@microsoft.com

Abstract — The high cost of software maintenance necessitates

methods to improve the efficiency of the maintenance process.

Such methods typically need a vast amount of knowledge about a

system, which is often mined from software repositories. Collect-

ing this data becomes a challenge if the system was developed

using multiple code branches.

In this paper we present an integration resolution algorithm that

facilitates data collection across multiple code branches. The al-

gorithm tracks code integrations across different branches and

associates code changes in the main development branch with

corresponding changes in other branches. We provide evidence

for the practical relevance of this algorithm during the develop-

ment of the Windows Vista Service Pack 2.

Keywords-Algorithms, Management, Measurement

I. INTRODUCTION

Maintenance of a large software system is a costly activity.
It is estimated that maintenance expenses can account for the
50% of overall expenses associated with the software system
lifecycle [1]. Given the tremendous cost of software mainten-
ance, a large effort is undertaken to streamline software main-
tenance and make it less expensive. Popular approaches to im-
prove efficiency are change impact analysis [2][3], models to
predict fault-proneness [4][5], or models to predict software
regressions [6][7]. These tools help improving efficiency of the
software maintenance by directing testing efforts.

However, all these tools require a large amount of informa-
tion on the software system. This information is collected with
special tools called mining tools from various software reposi-
tories, such as version control systems, bug databases, and the
program source code itself. The goal of mining tools is to col-
lect information on the system scattered in these sources and
restore a holistic picture of software system’s evolution and its
current state. Several mining tools have been developed
[10][15], but they have one significant drawback: they do not

properly handle the situation, when software systems use
multiple code branches.

A code branch is a separate copy of the program’s source
code that evolves separately from the original copy [8]. In gen-
eral, branches support parallel software development. Using
branches is beneficial during both development and mainten-
ance of the software system. On the one hand, code branches
allow to efficiently distributing development across multiple
teams. On the other hand, code branches facilitate efficient

maintenance of the software system and help minimizing risk
of undesired changes in the behavior of the software system.
For example they can alleviate negative effects of software
regressions, i.e., bugs which make features stop functioning
after a change. However, branching poses some unique chal-
lenges when mining information on the evolution of a software
system: code changes can migrate between different branches;
this process is called code integration. As a result, it is not be
possible to restore a complete picture of the change history by
just looking at changes in only one branch. Unfortunately,
many version control systems provide only limited information
on code integrations. Thus analyzing multiple branches is a
non-trivial task as we will show.

In this paper we discuss problems associated with collect-
ing data from multiple code branches used during development
or maintenance of a system. To tackle these problems, we pro-
pose an integration resolution algorithm that facilitates collect-
ing change data from multiple code branches and discuss some
of its applications, such as analyzing periodic builds of the
software system. To ensure high flexibility the integration reso-
lution algorithm is implemented not as a part of the version
control system, but rather as a stand-alone tool. On the one
hand, this allows using the algorithm in a case when modifica-
tion of the version control system is not possible, e.g. because
its source code is not publicly available. On the other hand, it
allows retrieving information on code integrations not only for
recent code changes, but also for vast amounts of historical
data. Finally, we present our experiences of using this algo-
rithm during the Windows Vista Service Pack 2 development.

II. RELATED WORK

Mining software repositories to collect information on evo-
lution of the software system gained lots of attention recently.
For example, Silwerski et al. [9] and Kim et al. [16] introduced
the concept of bug-introducing changes. By mining code
changes and fixes, they built a classifier that allows detecting
buggy changes [17]. Cubranic and Murphy developed the Hi-
pikat mining tool [10] that scans version control systems, bug-
tracking database, and mailing list to extract information on
entities, such as code changes, developers, and bug records.
Hipikat identifies relations between these entities (e.g. what
bug is responsible for a particular code change) and stores this

* Alexander Tarvo was an employee of Microsoft Corporation

when this work was carried out.

information in relational form. The resulting data is used to
educate and guide developers who are new to a project.

Mining information about code changes in multi-branch
software projects has also drawn attention. Perry et al. [11]
studied parallel and potentially conflicting changes, e.g. when
many developers are editing the same source file. They pro-
posed a number of metrics to quantify such a parallel develop-
ment and showed that parallel development has a generally
negative effect on the quality of the software. Zimmermann
studied the frequency of code integrations in CVS repositories
[19] and Bird et al. described merging practices for GIT reposi-
tories [18]. In an exploratory study on ArgoUML, Williams
and Spacco [21] identified characteristics of code integrations.

Zimmermann and Weißgerber [12] describe how to effec-
tively preprocess data for mining software repositories. They
notice that code integrations from different branches can be
considered as noise and call for an algorithm for detecting code
integrations. One such algorithm is proposed in the work of
Fischer et al. [13]. They point out that much of information
about software evolution is lost during code integrations. Their
heuristic-based algorithm can detect code integrations in the
CVS version control system. However, it has certain assump-
tions, for example that code integrations occur only at the end
of branch history. Mens [22] and Kim and Notkin [20] survey
the research on software merging and differencing. However,
most of this work addresses how to effectively compare and
merge changes and not how to deal with integrations for soft-
ware analysis and mining.

To the best of our knowledge no research has explicitly ac-
counted for code integrations when mining software reposito-
ries. In most cases, code integrations are either ignored or
simply not differentiated at all [23]. In this paper we show how
to include information on code integrations for the analysis of
software evolution. We propose an algorithm that reports not
only the point of code integration, but also reports all the

changes in different branches that were brought by that inte-
gration to the trunk branch. In our work, we use information
about integrations provided by the version control system itself.
If such data is not available, one can combine our algorithm
with the integration detection heuristic introduced by Fischer et
al. [13]. Furthermore, we consider multi-branch scenarios, i.e.,
when code changes flow through multiple branches before ac-
tually ending in the trunk.

III. SOURCES OF INFORMATION ON THE EVOLUTION OF A

SOFTWARE SYSTEM

Development and maintenance of large software systems is
a resource-consuming process that is usually performed by a
large group of developers. Considering its cost and complexity,
the need for tools and methods to aid in the software develop-
ment arouses naturally.

One such tool is the Version Control System (VCS), a cen-
tralized database that stores source code of the software system.
A VCS allows synchronizing the work of many developers
working on the product. In addition to that, the VCS also stores
a complete history of changes in the source code of the soft-
ware system. Every change is represented as a special record in
the VCS called a check-in. For every check-in, the VCS stores

the date of the change, the name of the developer who made the
change, a short description of the change written in plain text,
the list of changed source files, and the actual changes in
source code in the form of a textual diff. Check-ins are identi-
fied by a unique number or a tag called a check-in ID. Each
check-in changes one or more source files. To discriminate
between different versions of these files, version numbers are
used by the VCS. Such a version number, along with the full
path to the source file, allows identifying every particular ver-
sion of any source file in the system.

Check-ins provide details on the changes themselves, but
they give only very limited information about the rationale why
these changes were made. This information is typically stored
in the Bug-Tracking Database (BTD) in the form of bug
records. Bug records are used to track the work on various
changes made in the code of the project, such as bug fixes, new
features, maintenance or reliability improvements, and other
changes. Every bug record within the BTD is identified by a
unique number (called a bug ID) and contains useful informa-
tion on the issue itself, including nature of the issue (is it a bug
or a new feature), names of people who worked on the issue,
security effect of the issue, and other data. Moreover, bug
records contain information about software regressions. If the
change for a bug report fixes a regression caused by some ear-
lier change, the ID of the bug report that caused the regression
is also recorded.

The VCS, BTD, and the code of the system are very impor-
tant sources of information about the evolution of a project.
They contain data on a variety of entities, such as binary mod-
ules, source files, functions, check-ins, bug records, and people.
These entities are related to each other in many ways. For ex-
ample, the bug is related to check-in if fixing the bug results in
creation of the check-in. Similarly, the source file is related to
the binary if that source file is used to build that binary, and the
check-in is related to the developer if the developer is one who
created that check-in.

Some relations, such as check-in to developer relation, are
straightforward to discover since VCS ensures that the name of
the developer is always present in the check-in. Discovering
other relations, e.g. bug to check-in relation, is not as easy.
Although the ID of the corresponding bug is usually entered
into the check-in description field by the developer along with
other textual or numerical data, there is no strict format that the
check-in description field must follow. Moreover, most VCSs
have no mechanisms to enforce the developer to enter the valid
bug ID, and, as a result, this important piece of information can
be missing.

Despite all these difficulties reconstructing relations be-
tween entities in the software system is still possible. This is
done using mining tools that are analyzing various sources of
information about the software system, such as VCS, BTD,
system’s source code, or mailing archives.

Mining tools have a number of important applications. One
of them is collecting historical information on evolution of the
software system. This information is used for many purposes,
such as building statistical models that predict risks in that sys-
tem. One kind of these models identify system’s components
with high risk of failure [4][5], another models identify code

changes with high risk of introducing software regres-
sions[6][7]. These predictions allow allocating testing re-
sources more optimally, e.g. provide additional testing for the
most risky components or fixes and, at the same time, reduce
testing for those entities that have minimal risk.

Mining tools can be also used to collect information on a
current state of the system. For example, they are used to ana-
lyze periodic builds of the system and determine what bugs are
fixed in each particular build and apply predictive models to
predict risk of these fixes [15]. They can also be used to build
recommender systems such as Hipikat [10]. For a full survey of
mining tools we refer to Kagdi et al [23].

Unfortunately, when multiple code branches are used dur-
ing the development and maintenance of the software system,
mining information about changes becomes more complex
because of code integrations. In particular, associating check-
ins with bugs becomes more difficult. As we discussed earlier,
when the bug fix results in the code change either the ID of the
bug record is stored in the check-in description, or the bug
record itself contains a reference to the check-in. However,
when integrating code, version control systems typically copy
only the changes themselves but not the meta-information
about the changes from the source branch to the target branch.
In our example, the description of the check-in in the source
branch might not be necessary copied to the target branch dur-
ing the integration, especially when results of multiple code
changes are integrated at once. Thus knowledge about who
made a change, when, why, and which bugs were fixed is lost,
unless both the source and target branch are analyzed. In this
paper, we present an algorithm that facilitates this kind of anal-
ysis and we share our experience of using this algorithm at
Microsoft.

IV. DEVELOPMENT AND MAINTENANCE USING MULTIPLE

CODE BRANCHES

Code branching is a widely used methodology to streamline
developer’s work. It is used both during the development and
maintenance of the software system. In this section, we de-
scribe common branching strategies that are used in profes-
sional software development.

A. Multiple code branches during maintenance

One reason to introduce code branches is improving relia-
bility of the software system by separating code of its stable
versions from code of new, unstable ones. After a stable ver-
sion of the software system is released, developers have to start
their work on its new version. However, at the same time they
have to maintain the old version of the system. Maintenance
activities include fixing reliability, performance and security
issues [14] and result in numerous fixes in the system’s source
code. These fixes are wrapped into software updates and re-
leased to customers on a regular basis.

However, changes that occur during the development of the
new version should not be included into these updates. Newly
developed code has not undergone as much testing as the re-
leased old version of the system. As a result, it has lower quali-
ty and, thus, higher risk of software regression. Using the same
code branch for both development and maintenance is practi-
cally impossible.

To solve this problem, developers typically create a sepa-
rate code branch called a development branch that will be used
to develop a new version of the software. The original version
of the system’s code will be used to develop updates for the
stable version; it will become a maintenance branch (see the
Fig. 1). Such schemas are used for example by the Apache and
Eclipse open-source projects.

Another possibility is to create multiple maintenance
branches, so every branch will be used to develop a different
type of fixes. For example, one branch will contain only high
applicability fixes (e.g. security or reliability fixes) that are
shipped to every user of the product. Another branch will con-
tain low-applicability fixes (e.g. performance improvements)
intended to be downloaded only by customers who need these
fixes. Such an approach ensures that every user has to install a
minimal set of updates which, in turn, can minimize the impact
of possible software regressions on the user community caused
by faulty low-applicability updates. In this case, however, all
the changes in the high-applicability branch must be copied
into the low-applicability branch as well. This is done through
a typically automated process called integration, when changed
files from one branch are integrated (copied) into the different
branch (see the Fig. 2). The integration takes place in the form
of check-ins on the destination branch.

B. Multiple code branches during development

Another reason to introduce code branches is distributing
development effort across multiple developers and develop-
ment teams. In this case it can be beneficial to create multiple
code branches, so-called feature branches. Every team that
works on its own features of the system will maintain a sepa-
rate copy of the system’s source code in its private feature
branch. This guarantees that new (and, potentially unstable)
changes made by one developer do not affect another develop-
ers working on different parts of the system. Fig. 3 illustrates
the use of feature branches.

When development approaches a certain milestone, all the
changes in feature branches fb1, fb2, fb3 are merged back into
the main (also called trunk) branch that is used to build and test
the product. This process of copying changes from develop-
ment branches into the trunk is called a reverse integration.
Once all the reverse integrations are done, the product is tested.
During testing some bugs can be found and corresponding fixes

 Maintenance branch

Development branch

Low-applicability fixes

Legend:

 - check-in - product release - code integration

High-applicability fixes

Figure 1. Using multiple code branches during

software maintenance

Figure 2. Using multiple code branches to reduce

the risk of software regressions

will be made either in the main trunk branch or directly in the
development branch.

After a predefined quality criterion is met, all the code from
the trunk branch is copied back into feature branches. Such a
process is called a forward integration. Forward integration
ensures that developers will use the newest version of the sys-
tem when they will start working on its next milestone.

V. MINING MULTIPLE BRANCHES

Above we discussed two basic scenarios of using code
branches. During software development and maintenance large
projects with a long development history, such as Microsoft
Windows, might use more complex branching configurations
that combine both scenarios described above. On the one hand,
new features are developed, which necessitates the develop-
ment branch (or branches). On the other hand, all reliability,
security, and performance issues fixed in the old version of the
system must be also fixed in its new version. Thus any fix
made in the maintenance branch must be also integrated in the
development branch.

Such complex branching schemas provide benefits for de-
velopment, but complicate mining software repositories. While
analyzing the history of changes in the system we naturally
have to concentrate on changes in the trunk branch because this
is the branch used to build the final version of the product. But
depending on the branching schema, the vast majority of code
changes in the trunk can be just results of integrations from the
development or maintenance branches. This poses a serious
problem during the analysis of a software system. Any integra-
tion in the trunk branch can be a result of multiple changes in
the development or maintenance branches; however, it is not
possible to distinguish these changes by analyzing only the
trunk. Many important pieces of information about the evolu-
tion of the system are lost:

 Information about bugs. Integration check-ins usually do
not contain information about associated bugs. Such data
can be retrieved only by analyzing check-ins in the devel-
opment or maintenance branch, where check-ins are re-
lated to bug fixes. But even if the integration check-in does
contain a reference to corresponding bug records, this in-
formation is hardly useful because one single integration
check-in in the trunk usually contains multiple fixes, and
thus references to multiple bugs. In order to reliably identi-
fy code changes that fix a particular bug, every particular
change in the development branch must be analyzed;

 Information about the developer who made the change.
Developers are checking in fixes into the maintenance or
development branches, not into the trunk. Thus to get the
name of the developer who implemented a change, the de-
velopment or maintenance branches have to be analyzed.
Analysis of fixes in the trunk branch will return only the
names of the people who integrated changes into the trunk
branch;

 Information about code churn. Source files or functions
can be changed multiple times in the maintenance branch
before being integrated into the trunk. If only the trunk
branch is analyzed, just a single change in the trunk branch
will be counted and the information of changes in the other
branches is lost. Moreover, information on the time when
these changes were made is lost as well;

Fig. 4 provides an example of such information loss. Here
the integration check-in that created version v.5 of some file in
the trunk branch took place in August, but it contains numerous
changes that occurred in development branch Dev and main-
tenance branch Maint during the May-July time interval. With-
out explicitly finding which changes were integrated, it is im-
possible to accurately determine the names of developers, time
intervals, and bugs associated with these changes.

Moreover, we cannot assume that all the changes in main-

Aug Jul Jun May Apr

v.5
Trunk

#1435 #1924

#1157 #1158 #1674

v.4

v.7 v.8 v.9 v.10 v.11 v.12

v.16 v.17 v.18 v.19

Calendar time

T347 T322

D726

D818 D921

D1223

D701 D1112

M452 M521 M523 M560

Dev

Maint

Figure 4. Histories of changes in a source file

across multiple code branches

Legend:

 - check-in - bug record - source file version
T322

#1158
v.18

Legend:

 - forward integration - reverse integration - product milestone

feature branch fb1

feature branch fb2

feature branch fb3

trunk

Figure 3. Multiple code branches during development

tenance or development branches are eventually integrated into
the trunk. In fact, some recent changes in the development
branch might not be integrated into the trunk yet, and some
changes in the maintenance branch might not be integrated at
all (for example because these components of the system would
undergo a complete redesign in its new version). Thus mining
only development and maintenance branches separately will
not give us an accurate knowledge of the system; instead all
branches have to be mined together.

Below we present an integration resolution algorithm that
tracks integrations in the code of the software system. For each
check-in in the trunk branch it determines changes in the de-
velopment branch that were integrated into that check-in. We
first describe the algorithm in a scenario with two branches and
extend it then to a multi-branch environment.

A. Integration resolution algorithm

The algorithm accepts the check-in ct (the subscript here
denotes affiliation of the entity to the branch) in the trunk
branch t that was created as a result of integration from devel-
opment branch d. The check-in ct affects a set of source files Ft
in the trunk branch. For every single source file ft ∊ Ft a number
of versions ft [j], j∊(1,…,M) exist, where the maximum version
number M is different for every source file ft∊ Ft. These ver-
sions represent the evolution of the source file f in the branch t.
Correspondingly, as a result of check-in ct a new version is
created for each of these source files.

The Fig. 5 presents the overall schema of the algorithm
(implementation details can depend on the API of the particular
VCS), which is fairly simple:

1. For the check-in ct find the set of source files Fd in the
development branch d that were integrated into the trunk
branch;

2. For every source file fd ∊ Fd determine the time interval
that contains all the changes in the branch d that were inte-
grated into the trunk. This time interval is defined by the
lower and an upper bounds;

3. Retrieve these changes and form a result set Cd
all

.

The first step is trivial when the version control system
records the fact of code integrations and the corresponding
source branches. In fact, our algorithm enumerates all the
source files in Ft. For every source file ft ∊ Ft in the trunk
branch, the integration resolution algorithm retrieves a source
of integration – the version fd [u] of the file fd in the develop-
ment branch. In our case this information is provided by the
version control system. For version archives that do not record
integration events (such as CVS) the algorithm proposed by
Fischer et al. [13] can be used to identify the source of integra-
tion.

During the second step, our algorithm determines which
versions of each source file fd were integrated into the trunk
branch. For this, it retrieves a complete history of changes for
the file fd from the VCS. Then the algorithm finds the lower
and the upper bounds of the time interval that contains versions
integrated into the trunk. The upper bound is simply the source
of integration under study, that is the version fd [u] of the
source file fd. The lower bound fd

[l] is the version of the file fd

that was created by the previous integration between the trunk
branch and the development branch.

At the lower bound, contents of the files ft and fd are iden-
tical because all the previous changes in the trunk were copied
into the development branch. Normally this copying is per-
formed during the forward integration, when data from the
trunk are copied back to the development branch. After this
integration the file fd starts changing in the development branch
because of subsequent check-ins; thus contents of the files ft

 function ResolveIntegration(ct)

inputs: ct, the check-in in the trunk branch t that is the result of integration from the development branch d

returns:
 , the set of all check-ins in the development branch d that were integrated into the trunk branch t by the ct

 ← {};

for each source file ft affected by ct /* Step 1: Enumerate sources of integration*/

 fd _source ← source of integration for the ft in the development branch;

fd [] ← array of all versions of the file fd /* Step 2: Determine time interval (lower and upper bound)*/

sort fd [] ascending, so the latest versions of fd are last in the array;

reachedUpperBound = false;

for j = number of versions in fd [] to 1 step -1

fd [j] ← j-th element of fd [];

if fd [j] is equal to fd _source then

reachedUpperBound ← true;

if reachedUpperBound = true then

if (fd [j] is a result of forward integration from the trunk branch t to the dev branch d) OR

 (fd [j] is a result of reverse integration from the dev branch d to the trunk branch t)

break; // We reached the “lower bound”, exit the loop

 /* Step 3: Build the result set */

cd

 ← check-in in the dev branch d that caused change in fd [j];

 // Add the check-in to the list of resulting check-ins

Figure 5. Pseudo code of the integration resolution algorithm

and fd are becoming different again. With the next reverse inte-
gration all these changes are brought back into the trunk branch
and form the check-in ct. This integration denotes an upper
bound, where contents of the files ft and fd are identical once
again. Thus the reverse integration contains all the changes that
occurred in the development branch between the lower bound
(non-inclusive) and the upper bound (inclusive).

As we see, reverse and forward integrations play the role of
a synchronization mechanism that synchronizes the file’s con-
tents in different branches. The integration resolution algorithm
detects when the last synchronization is performed (a “lower
bound”) and collects all the changes up to the reverse integra-
tion under study (an “upper bound”).

Fig. 4 illustrates the situation described above. Here we are
analyzing check-in T347, which is a result of reverse integra-
tion from the development branch into the trunk. Check-in
T347 affects file ft and, as a result, version v.5 of this file is
created in the trunk branch. In this case the upper bound is ver-
sion v.11 of the file fd in the dev branch; it is the last version of
the source file fd prior to the reverse integration. The lower
bound is version v.8 created by the latest forward integration
from the trunk to the development branch (check-in D726). All
changes made to the source file between these two versions v.8
(excluded) and v.11 (included) are integrated into the trunk.

Another common integration scenario is depicted in the Fig.
6. In this case contents of the file ft in the trunk branch are fre-
quently copied into the development branch to keep source
code in these branches synchronized in a long term (check-ins
D45, D46, D47 on the figure). However, after a subsequent
integration contents of the file fd in the development branch are
modified and brought to the trunk using a reverse integration,
which results in creation of version v.12 of the file ft in the
trunk branch. Here we analyze the check-in T116 in the trunk.
In this case the upper bound is the version v.8 of the source file
fd in the development branch. The lower bound is the version
v.6 that corresponds to the last forward integration from the
trunk branch. As a result, the algorithm will correctly report
that changes in versions v.7 and v.8 of the file fd are integrated
into the trunk branch.

It is important to notice that not only the latest forward in-
tegration from the trunk into the development branch can be-

come a lower bound, but also any previous reverse integration
from the development branch into the trunk can become a low-
er bound simply because it also leads to the synchronization of
file contents between two branches. One example of such situa-
tion is shown in the Fig. 2, where changes in the high-
applicability maintenance branch are frequently integrated into
the low-applicability maintenance branch, but not vice versa.

The result of the second step is the sub-array fd (l,u] which
contains all the versions of the source file fd changed between
the lower and upper bounds. This array can be associated with
the destination of the integration, the file ft, and allows to
access information such as developers and bug fixes which are
included in a code integration.

Finally, in the third step we setup links between the check-
in ct in the trunk branch and check-ins in the development
branch that were integrated by ct for file ft. For every version of
the file fd [j] with j∊ (l,u] we locate the check-in cd that created
that version. These check-ins constitute the set of check-ins Cd
whose contents were later integrated into the trunk branch by
the check-in ct.

The second and third steps are performed for each source
file ft in Fd affected by the check-in ct. For every source file ft

we are forming its own set of check-ins Cd. Finally, the union

of all sets
 forms the result set

 of all check-
ins that were integrated into the trunk by the check-in ct. (In the
Fig. 5, the computation of Cd is omitted to reduce the com-
plexity of the algorithm.)

Once the set of check-ins
 is known, all the bugs,

source files, and people related to a code integration ct can be
used by mining tools such as BCT [15] or Hipikat [10].

B. Finding lower bound for merge operations

Above we considered situations when the whole text of the
source file is copied during the integration from one branch to
another. However, such “force copy” integration is not always
possible. For example, certain changes in the development
branch were made before the forward integration and these
changes must be preserved during that integration. Obviously, a
“force copy” is not possible in this situation, so changes in the
development branch are merged with the changes in the trunk.

Proper handling of merges requires some changes to be
made to the integration resolution algorithm in order to deter-
mine a lower bound of integration properly.

Fig. 7 provides an example of code merge. Here two
changes were made to the trunk and development branches
almost simultaneously: these are check-in T105 in the trunk
branch (results in creating of version v.11 of the source file)
and check-in D47 in the development branch (results in version
v.6). In order to preserve both changes v.11 is merged, not co-
pied into the development branch. This results in the check-in
D48 (merge is shown by the dashed line). Finally, after the
change D49 all the changes in the development branch are
brought back to the trunk by the reverse integration. This re-
sults in the check-in T116 in the trunk branch which we want to
resolve.

In order to handle such cases properly, we have to treat
every code merge from the trunk to the development branch as

Dev

Trunk

v.4 v.5 v.6 v.7 v.8

v.12

D45 D46 D48 D47 D49

T116

Figure 6. Processing of multiple forward integrations with

the integration resolution algorithm

a regular check-in. This will result into minimal changes in the
algorithm outlined in the Fig. 5:

 The algorithm has to examine every check-in to determine
if it is a copy or merge operation. Ideally the VCS should
provide such functionality. If it does not, then the contents
of the file version in the source branch before the potential
merge and in the destination branch after the potential
merge must be compared. If the contents of these file ver-
sions are the same, then a force copy occurred. Otherwise,
this version was created as a merge and should be treated
as a regular check-in.

An example of such situation is depicted in the Fig. 7.
Here the contents of v.5 of the file in the development
branch are equal to the contents of v.10 of that file in the
trunk because there was a force copy between these files
caused by reverse integration. Instead, v.7 of the source
file in the development branch is different from the v.11 of
the same file in the trunk because v.7 contains changes
from both v.11 in the trunk and v.6 in the development
branch.

 If the change is a merge, it should be considered by the
integration resolution algorithm as a regular check-in and
the search for a lower bound should continue. If the
change is a force copy integration, the algorithm has found
a lower bound.

C. Multi-stage integrations

So far we considered the scenario with only two branches,
namely trunk and development. However, in practice multi-
stage integrations are common, that is, changes are integrated
through multiple branches before they reach the trunk. For ex-
ample, the Fig. 4 depicts the scenario where check-ins made to
the maintenance branch are integrated into the development
branch and, finally, are integrated into the trunk branch. Anoth-
er situation where multi-stage integrations are likely is when
two maintenance branches are used for different kinds of fixes,
as shown in the Fig. 2.

In order to track multi-stage code integrations we apply our

algorithm recursively. For every check-in ct in the trunk we are
getting a set of corresponding check-ins Cd in the development
branch. If one of these check-ins cd ∊ Cd is a result of code inte-
gration from a different branch, we apply the integration reso-
lution algorithm to cd. Please note that here both force copies
and merges can be considered as code integrations.

The pseudo code of the algorithm is shown in the Fig. 8.
Here every check-in is represented by an instance of the cor-
responding class. Its intSources field contains the list of check-
ins from the lower-level branches that were identified with our
resolution integration algorithm.

Please note that proper handling of merges require special
care. On the one hand, merge can be seen as a special case of
code integration and thus should be properly resolved. On the
other hand, merges can form loops with other integrations. One
example of such a loop can be seen in the Fig. 7. Here we are
resolving integration from the development branch to the trunk
(check-in T116). However, one of the check-ins in the devel-
opment branch itself is the integration from the trunk (D48) and
should not be resolved. To prevent the algorithm from resolv-
ing such circular integrations the multistage algorithm main-
tains a set of the branches it already went through. If the mul-

 allbranches int ources

function ResolveMultibranch(ct , branchesTraversed)

inputs: ct, a check-in in the trunk branch t that is a result of integration from the dev branch d

 branchesTraversed: a set of all the branches encountered so far (initially empty)

returns: a set of all check-ins in the development branches that were integrated into the trunk

bt ← the name of the branch the check-in ct belongs to

branchesTraversed ← branchesTraversed bt

ct.intSources = ResolveIntegration(ct)

for each check-in cd in ct.intSources

bd ← the name of the branch cd belongs to

if cd is a result of integration and branchesTraversed does not contain bd then

cd.intSources = ResolveMultibranch(cd, branchesTraversed)

 allbranches allbranches int ources
return allbranches

Figure 8. Pseudo code of the multistage integration resolution algorithm

v.7 v.6 v.8

v.12

D48 D47 D49

T116

v.10

T102

v.11

T105

v.5

D41

Dev

Trunk

Figure 7. Integrations using code merge

tistage algorithm detects that certain check-in leads to the cir-
cular integration, it skips that check-in from the further analy-
sis.

The algorithm represents the history of check-ins and inte-
grations with a tree structure (see the Fig. 9). The nodes
represent check-ins and edges between these nodes represent
integrations. Leaf nodes correspond to plain fixes, namely, to
check-ins that are not results of code integration from other
branches. In most cases, these fixes can be related to bugs in
the bug-tracking database. Inner nodes represent check-ins that
resulted from code integration. Edges point from the code inte-
gration to its sources and represent the flow of integrations. For
example, the Fig. 9 shows the tree of code integrations that
corresponds to the multi-branch scenario shown in the Fig. 4.
Here check-in T347 subsumes five other code integrations and
contains ultimately the fixes #1435, 1924, 1157, 1158, and
1674.

The tree allows us to quickly find the source and destina-
tion of code integrations for any check-in. For example, to find
which check-ins contributed to check-in ct, we lookup ct in the
tree, traverse its sub-tree, and collect all the leaf nodes. To faci-
litate search references to check-ins, the tree can be indexed or
stored in a hash table.

Once we have the leaf nodes, we can find any information
related to the changes that are contained in the code integration.
This includes entities, such as bugs, file versions, people, and
binaries, which are directly or indirectly related to check-ins.

D. Limitations of the algorithm

Our algorithm has the assumptions that all integrations be-
tween branches are carried out in regular patterns. It assumes
that for every reverse integration that occurs between a pair of
branches there is a corresponding forward integration. In other
words, fixes can flow between development and trunk
branches, between maintenance and development branches, but
not between maintenance and trunk branches (see the Fig. 4).

This assumption is true for most systems with a well-
established development processes (e.g. Microsoft Windows).
In fact, it represents the normal flow of development of the
software system and thus is reasonable. However, in some cas-
es code integrations might not follow such regular patterns. For
example, reverse integrations might flow from maintenance to
development branch and from development to trunk, while the
forward integrations might be made directly to both branches
(see the Fig. 10). Another problem is circular code integration,
when code from maintenance branch is integrated into the de-

velopment branch, from development branch into the trunk,
and from trunk back into the maintenance branch.

In the cases described above, our integration resolution al-
gorithm will not be able to locate the corresponding lower
bound and might produce wrong results. In our case such non-
standard situations were rare. In fact, they constitute only 2%
of all the integrations considered in this study, which proves
soundness of our assumptions. However, non-standard situa-
tions might occur more frequently in other projects.

VI. PRACTICAL RESULTS

We used the integration resolution algorithm during the
Windows Vista Service Pack 2 (SP2) development to deter-
mine which bugs were fixed in periodic builds of the system.
This, in turn, allowed us to predict the risk of software regres-
sions for each of these bugs. It is important to emphasize that
with the term “bugs” we refer to bug records in the BTD,
which besides actual faults can also include reliability, perfor-
mance, and usability improvements.

In our earlier work, we developed a statistical model to pre-
dict risk of software regressions in Windows software updates
based on the properties of these updates [7], such as the number
of source files and functions affected by the corresponding
code change, and properties of the corresponding bug (is this
update a new functionality or a bug fix). The predictions were
used to optimize the testing process: it was recommended that
updates with a high predicted risk of software regressions
should be tested more thoroughly. The model proved to be suc-
cessful and, naturally, we wanted to use it to predict risk of
regressions during the Vista SP 2 development.

However, during the work on the Windows Vista SP2, a
complex branching schema was employed. The actual devel-
opment was performed in multiple development and mainten-
ance branches and then all the changes were copied into the
trunk branch. Multi-staged code integrations between these
branches were common; some changes travelled through 2 or 3
different branches before being integrated into the trunk.

The trunk branch was used to produce regular builds of the
product that were released for testing. To apply our statistical
model to Windows Vista SP2 we had to determine which bug
fixes were integrated into the particular build and determine
properties of these fixes. To do this we implemented the inte-
gration resolution algorithm on top of our tool for data collec-
tion, called Binary Change Tracer (BCT) [15]. The whole
process of data collection is performed in three stages.

During the first stage, BCT accepts two sets of binaries
that belong to the previous and current builds and compares
these binaries one by one. For every pair of binaries (old and
new ones) the tool uses symbol files to retrieve a complete list
of source file versions used to build these binaries. Then the
BCT turns to the version control system to retrieve a history of

Figure 9. Representing code integrations in the form of a tree

T347

 #1435 #1924

 #1157 #1158 #1674

D818 D921 D1112

M521 M523

Dev

Maint

Figure 10. A non-standard code integration

Trunk

code changes in every source file in that list. Next, BCT asso-
ciates code changes in the source files with the corresponding
bugs in the bug-tracking database and saves all the mined in-
formation into its own BCT database. Once all the binaries are
processed, full information about changes between previous
and current builds is accumulated.

In addition to information about code changes, our new
version of BCT now also collects information about which of
these changes are code integrations and from which branch
they were integrated from (their source of integration). This
information is needed to run our code integration algorithm in
the third stage. For every file that was modified because of
code integration, a link to the integration source is stored in the
BCT database. As a result, information about code integrations
between these branches is also accumulated in the database.

After data collection, the second stage begins: information
about changes in the trunk branch between two builds is loaded
from the database into the computer memory, where it is
represented in the form of the object model. Every source file,
source file version, check-in, person, and bug record is
represented through an instance of the corresponding class.
Relations between these entities are represented as references
to other objects. Every object representing a source file version
has a link to the source file object (which is a container for all
versions of that source file), every source file version has a link
to a related check-in object, and, finally, check-ins that can be
associated with bugs have links to corresponding bug objects.
Furthermore, if a file version was created as a result of code
integration, a link to the sources of the integration is provided.

During the third stage, we launch our multi-stage integra-
tion resolution algorithm for all integration check-ins found in
the trunk branch. It retrieves data on code integrations from the
BCT database and incorporates them into the object model. As
a result, for every check-in in the trunk branch an integration
tree is created. This allows us to find a full list of bug fixes that
were brought to the trunk.

Finally, we compute code metrics for every bug record.
These metrics include number of source files changed to fix the
bug, number of code lines affected, and if this bug record is a
new functionality or bug fix. With this information, a risk of
regression for every bug is predicted using a logistic regression
model as shown in our earlier work [15].

During the final stages of SP2 development data on code
changes was collected once or twice a week. A report was pre-

sented through a web-interface; it contained the list of fixes in
the build and their risk of regression. Information on risk of
changes helped test engineers to decide on how much testing
was necessary for a fix. Moreover, knowing a full list of bugs
and code changes in the build helped project management to
better track the progress of the project.

To speed up the data collection, we used multiple copies of
BCT running on different machines, so that they could simul-
taneously process builds coming from different code branches.
The first stage took 12-24 hours to collect data (19 hours aver-
age), and the second stage normally took 25-50 seconds (35
seconds average) to load data on changes in a trunk branch
from the database. The third stage, which runs the integration
resolution algorithm to build an integration tree for every
check-in and calculates risk of regression for every bug, took 1-
40 seconds (7 seconds average). All the measurements were
done on a Pentium-D 3.4 GHz machine with 2 GB RAM.

We also used our integration resolution algorithm to com-
pute the fraction of Vista SP2 bugs that were fixed directly in
the trunk branch, bug fixes for which it took one step to get
integrated into the trunk (1

st
 level of integration), and bug fixes

for which it took more than one step to get integrated into the
trunk (2

nd
 or higher level of integration). We collected this data

during the last six months of the Vista SP2 history, beginning
October 1, 2008 and ending March 31, 2009 (which was close
to the Vista SP2 release date April 28, 2009). This time span
included important milestones of the SP2 project, such as Beta
and Release Candidate.

The results in Table I clearly show that only a small frac-
tion of all the check-ins in the trunk branch can be associated
directly with the bug records in the bug-tracking database. The
vast majority of the fixes, instead, were done in the mainten-
ance and development branches and then integrated into the
trunk. Moreover, most fixes required two or more integrations
before finally being included into the trunk branch. Without
using our multi-stage integration resolution algorithm these
bugs could not be properly associated with check-ins in the
trunk branch. This, in turn, would cause a major loss of infor-
mation about changes in the system.

The high percentages for 1
st
 and 2

nd
 level integrations in

Table I demonstrate the importance of dealing with branches
when mining software repositories.

VII. EXPERIENCE AND LESSONS LEARNED

In the presented paper we addressed the problem of mining
software repositories in the presence of multiple code branches
for development and maintenance. We described common
branching schemas and introduced an algorithm to resolve in-
tegrations across multiple branches. Our algorithm tracks the
flow of code integrations and matches code changes in a trunk
branch to corresponding changes in other branches.

The algorithm proved to be extremely valuable during the
development of Vista SP2. It allowed us to accurately deter-
mine which bugs were fixed in every build of the system and
predict risk of software regressions for these bugs. In turn, this
information allowed better control over the development
process and optimize testing of builds.

TABLE I. PROPORTION OF VISTA SP2 BUG FIXES IN BRANCHES

Time
Percentage of bug fixes in different branches

Trunk 1st Level 2nd Level or more

Oct 2008 12.8% 33.3% 53.9%

Nov 2008 8.0% 34.5% 57.5%

Dec 2008 4.0% 50.7% 45.3%

Jan 2009 0.5% 49.5% 50.0%

Feb 2009 26.1% 27.5% 46.4%

Mar 2009 9.6% 16.7% 73.7%

Our algorithm has a number of assumptions on the data
provided by the BTD and VCS. We relied on the VCS as on
the source of information on integrations; however different
VCS implementations might not provide this data. In this case
the algorithm described by Fischer et al. [13] can be used to
infer this information. Another assumption on the strict order of
integrations can be more severe. Although in Vista SP2 only a
small fraction of integrations did not follow that order, other
systems might have less established integration schedules.
Thus we plan to develop an extended version of the integration
resolution algorithm without any assumptions regarding the
flow of integrations.

 We implemented our integration resolution algorithm as a
stand-alone tool. Although functionality similar to the pre-
sented algorithm could be implemented directly in the VCS,
this will not solve all the problems associated with integration
resolution.

First, implementing the integration resolution algorithm as
a part of the VCS will not allow mining the vast amounts of
historical data for legacy systems. Such data can be particularly
useful for building predictive models, such as regression pre-
diction model [7]. In order to be trained, such models require
vast amounts of historical data on bugs and corresponding code
changes, which can be impossible to mine without integration
resolution algorithm.

Second, adding integration resolution functionality to the
VCS itself might not be always possible. For example, the
source code of the VCS might not be available, or the VCS can
be maintained by a different team of developers who are unable
(or unwilling) to make changes into the system. Thus our im-
plementation of the algorithm as an extension of the BCT min-
ing tool provides better flexibility than embedding it directly
into the VCS.

Nevertheless, a number of improvements can be made in
the existing design. For example, launching a tool to collect
data separately for every code branch is both inefficient and
inconvenient, especially for projects with many code branches.
To solve this problem integration resolution algorithm must be
implemented in the BCT itself. The algorithm will then be
launched when the trunk branch is processed and will not re-
quire separate processing of other branches. Another way to
improve performance would be parallelizing the data collection
operations performed by the BCT tool, which would result in
performance improvements on multi-core systems.

REFERENCES

[1] Vliet, Hans Van. Software Engineering: Principles and Practices. West

Sussex, England : John Wiley & Sons, 2000.

[2] X. Ren , F. Shah , F. Tip , B. Ryder , O. Chesley, Chianti: a tool for

change impact analysis of java programs, Proc. of 19th conference on
Object-oriented programming, systems, languages and applications,

2004, Vancouver, BC, Canada

[3] J. Jones , M. J. Harrold , J. Stasko, Visualization of test information to

assist fault localization, Proc. of the 24th International Conference on
Software Engineering (ICSE 02) , 2002, Orlando, FL

[4] N. Nagappan and T. Ball, “Use of Relative Code Churn Measures to
Predict ystem Defect Density,” Proc. 27th Int’l Conf. oftware Eng.

(ICSE 05), 2005, pp. 284–292.

[5] T. Zimmermann, N. Nagappan, Predicting Subsystem Defects using
Dependency Graph Complexities, Proc. of 19th International Symposium

on Software Reliability Engineering, Trollhattan, Sweden, 2007.

[6] A. Mockus and D. Weiss, “Predicting Risk of oftware Changes,” Bell

Labs Tech J., vol. 5, no. 2, 2000, pp. 169–180.

[7] A. Tarvo, Using Statistical Models to Predict Software Regressions.

Proc. of 20th Intl Symposium on software reliability engineering, 2008,
Redmond, WA

[8] Appleton, B., Berczuk, S.P., Cabrera, R., Orenstein, R.: Streamed lines:
Branching patterns for parallel software development. In: Proceedings of

PloP’ 98, published as TR #WUCS-98-25, Washington Univ., Dept. of
Computer Science (1998)

[9] J. liwerski, T. Zimmermann, and A. Zeller, “When Do Changes Induce
Fixes?” Proc. 2nd Int’l Workshop Mining oftware Repositories, 2005,

pp. 24–28.

[10] D. Cubranic and G.C. Murphy, “Hipikat: Recommending Pertinent

 oftware Development Artifacts,” Proc. 25th Int’l Conf. oftware Eng.
(ICSE 03), 2003, pp. 408–418.

[11] D. Perry , H. Siy , L. Votta, Parallel changes in large-scale software

development: an observational case study, ACM Transactions on Soft-

ware Engineering and Methodology, v.10 n.3, p.308-337, July 2001

[12] T. Zimmermann and P. Weißgerber , “Preprocessing CV Data For
Fine-Grained Analysis,” Proc. Mining Software Repositories, pp. 2-6,

2004

[13] M. Fischer, M. Pinzger, and H. Gall, “Populating a Release History

Database from Version Control and Bug Tracking ystems,” Proc. Int’l

Conf. Software Maintenance (ICSM 03), 2003, pp. 23–32.

[14] IEEE Standard for Software Maintenance. 1998. IEEE Std 1219-1998.

[15] A. Tarvo, Mining Software History to Improve Software Maintenance
Quality: A Case Study. IEEE Software 26(1): 34-40 (2009)

[16] . Kim, T. Zimmermann, K. Pan, E. J. Whitehead Jr., “Automatic Identi-
fication of Bug-Introducing Changes,” Proc. Int’l Conf. Automated

Software Engineering (ASE 2006), pp. 81-90

[17] S. Kim, E. J. Whitehead Jr., Y. Zhang: Classifying Software Changes:

Clean or Buggy? IEEE Trans. Software Eng. 34(2): 181-196 (2008)

[18] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. Germán, P. T.
Devanbu, “The promises and perils of mining git”, Proc. Int’l Work.

Conf. Mining Software Repositories (MSR 2009), pp. 1-10

[19] T. Zimmermann, “Mining Workspace Updates in CV ”, Proc. Int’l

Workshop Mining Software Repositories (MSR 2007)

[20] M. Kim, D. Notkin, “Program element matching for multi-version pro-

gram analyses”, Proc. Int’l Workshop Mining oftware Repositories
(MSR 2006), pp. 58-64

[21] C. C. Williams, J. pacco, “Branching and merging in the repository”,
Proc. Int’l Workshop Mining oftware Repositories (M R 2008), pp.

19-22

[22] T. Mens: A State-of-the-Art Survey on Software Merging. IEEE Trans.
Software Eng. 28(5): 449-462 (2002)

[23] H. H. Kagdi, M. L. Collard, J. I. Maletic: A survey and taxonomy of
approaches for mining software repositories in the context of software

evolution. Journal of Software Maintenance 19(2): 77-131 (2007)

http://portal.acm.org/citation.cfm?id=1029012&dl=GUIDE&coll=GUIDE&CFID=47487960&CFTOKEN=83862070
http://portal.acm.org/citation.cfm?id=1029012&dl=GUIDE&coll=GUIDE&CFID=47487960&CFTOKEN=83862070
http://portal.acm.org/citation.cfm?id=1029012&dl=GUIDE&coll=GUIDE&CFID=47487960&CFTOKEN=83862070
http://portal.acm.org/citation.cfm?id=1029012&dl=GUIDE&coll=GUIDE&CFID=47487960&CFTOKEN=83862070
http://portal.acm.org/citation.cfm?id=581397&dl=GUIDE&coll=GUIDE&CFID=47487960&CFTOKEN=83862070
http://portal.acm.org/citation.cfm?id=581397&dl=GUIDE&coll=GUIDE&CFID=47487960&CFTOKEN=83862070
http://portal.acm.org/citation.cfm?id=581397&dl=GUIDE&coll=GUIDE&CFID=47487960&CFTOKEN=83862070
http://research.microsoft.com/research/pubs/view.aspx?id=1172&type=technical+report&0sr=p
http://research.microsoft.com/research/pubs/view.aspx?id=1172&type=technical+report&0sr=p
http://www.issre2007.hv.se/extra/pod
http://www.issre2007.hv.se/extra/pod
http://portal.acm.org/citation.cfm?id=383878&dl=GUIDE&coll=GUIDE&CFID=47269382&CFTOKEN=90537121
http://portal.acm.org/citation.cfm?id=383878&dl=GUIDE&coll=GUIDE&CFID=47269382&CFTOKEN=90537121
http://portal.acm.org/citation.cfm?id=383878&dl=GUIDE&coll=GUIDE&CFID=47269382&CFTOKEN=90537121

