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Abstract 

 
Incorrect changes made to the stable parts of a 

software system can cause failures – software 

regressions. Early detection of faulty code changes can 

be beneficial for the quality of a software system when 

these errors can be fixed before the system is released. In 

this paper, a statistical model for predicting software 

regressions is proposed. The model predicts risk of 

regression for a code change by using software metrics: 

type and size of the change, number of affected 

components, dependency metrics, developer’s experience 

and code metrics of the affected components. Prediction 

results could be used to prioritize testing of changes: the 

higher is the risk of regression for the change, the more 

thorough testing it should receive.  

 

 

1. Introduction 

 
Despites all efforts of engineering community, bugs in 

software systems are still inevitable today. Probably, one 

of the most unpleasant classes of bugs is software 

regressions – undesired changes in the behavior of 

already stable parts and features of the software system. 

Software regressions can lead to significant problems for 

the software manufacturer, if are not detected and fixed 

early. If software regression is not detected during the 

testing, customers will be affected by undesirable side 

effects of the change. Such situation will result not only 

in a financial loss for a manufacturer (in any case, the 

issue needs to be fixed and update issued), but its 

reputation will also suffer. 

The key method of avoiding negative consequences of 

software regressions is testing of all code changes. 

However, cost and time restrictions often prevent 

engineers from doing exhaustive testing of all changes, so 

some method of test prioritization is necessary. Probably, 

one of the most straightforward and widely used of such 

methods is assessment of the risk, associated with each 

code change, by an expert or group of experts. The higher 

is the risk of regression, associated with the change 

(which can be also called regression proneness of the 

change), the more thorough testing it should receive. 

 However¸ manual risk estimation is costly and 

subjective: it relies on skills and experience of experts. To 

address this problem, we developed a statistical model to 

predict risk of regressions. The model utilizes knowledge 

of the software system, represented in a form of software 

metrics, and provides an objective quantification of 

regression risk for each code change. Predicted risk is 

used by test engineers to plan testing activities for 

changes: high-risk changes should pass through an 

extensive testing to discover possible regressions while 

changes with low probability of regression can pass just 

sanity testing.  

This paper presents an industrial case study, where we 

built the system to predict software regressions by using 

historical data on changes in Windows XP operating 

system. Analysis of system’s accuracy shows it could be 

successfully used to predict software regressions. 

 

2. Data collection 

 
In our work we concentrate on post-release changes, or 

fixes, which are made after software system is released to 

the market. These changes include bug fixes, new 

features, reliability or performance improvements. 

Information on fixes is stored in the bug-tracking 

database in the form of bug records. If the bug record 

describes a fix for a software regression, a link to the bug 

which resulted in regression is provided in the record. 

This allows for identifying fixes which caused regressions 

– regressed fixes. Only regressions, caused by changes in 

a source code of the software system, are considered. 

Since a fix typically results in a code change, the 

corresponding bug record can be related to the set of 

changes in the program source code. These changes are 

grouped in one or more check-ins – atomic changes of a 

source code, recorded in a version control system. Each 

check-in contains a list of changed source files, 

differences between old and new versions of these files, 

date of the change, name of a developer and a brief 

description of the change. By identifying check-ins, 
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related to the fix, it is possible to detect components of 

the software system, affected by it.  

Three major types of metrics are used to describe code 

changes in this study: these are (1) change metrics, (2) 

code metrics and (3) dependency metrics. 

 

2.1. Change metrics 

 
Change metrics describe properties of a software 

change itself: size of the change, number of changed 

components, experience of the developers and other 

properties. Some major classes of change metrics are 

described below. 

Number of changed components is one of the most 

important properties of the fix: complex fixes that cause 

changes in a large number of components are expected to 

be more regression prone than small fixes. By analyzing 

source and binary code of the software system, following 

metrics were defined: 

- AddedFunctionsCount: number of functions, added 

because of the fix; 

- DeletedFunctionsCount: number of functions, deleted 

because of the fix; 

- ChangedFunctionsCount: number of functions, 

changed because of the fix; 

- AddedSourceFilesCount: number of source files, 

added because of the fix; 

- DeletedSourceFilesCount: number of source files, 

deleted because of the fix; 

- ChangedSourceFilesCount: number of source files, 

changed because of the fix; 

- BinariesAffected: number of binary modules affected 

by the fix.  

Another group of metrics is related to the experience 

of developer, who performed the change – we call these 

metrics experience metrics. It can be possible that change 

done by an experienced person can be of a higher quality 

than that of an inexperienced programmer [9]. One 

possible method to estimate developer’s experience is 

looking at all fixes done by this person in past: the more 

fixes the developer worked on in past, the higher is 

his/her experience. Developer is considered experienced 

if he/she did more check-ins than 75% of other 

developers during the same period. Correspondingly, 

inexperienced developer did less than 25% of fixes in 

comparison to other developers. 

To measure overall programming experience of the 

developer we defined global experience metrics, based on 

the number of changes he/she made into the whole 

software system during the past 12 months: 

- CheckinsLastYear: overall number of check-ins by 

this developer; 

- ExperiencedDeveloper: 1, if developer did 15 or more 

check-ins; 0 otherwise; 

- InxperiencedDeveloper: 1, if developer did 2 or less 

check-ins; 0 otherwise; 

However, not only overall experience of developer 

matters, but his/her knowledge of the particular area of 

source code should be considered as well. To measure 

developer’s knowledge of the affected area, the number 

of changes he/she had made in this part of the system 

during previous 12 months was counted:  

- CheckinsLastYearInComponent: number of check-

ins developer did in the source code of the component, 

that is affected by a fix; 

- ExperiencedDeveloperInComponent: 1, if developer 

did 7 or more check-ins in the source code of the 

affected component, 0 otherwise; 

- InxperiencedDeveloperInComponent: 1, if developer 

did 1 or less check-in in the source code of the 

affected component, 0 otherwise. 

The last group of fix metrics is fix characteristics, 

which describe its nature and the overall fix process: 

- FixForRegression: 1, if this is a fix for a known 

regression, 0 otherwise; 

- IsNewFeature: 1, if this fix is a new feature, 0 if it is a 

bug fix; 

- CheckinCount: number of check-ins required to make 

the change; 

- DeveloperCount: number of developers, working on 

the change; 

- BugLinesDelta: summary change in size (LOC) of 

affected functions.  

 

2.2. Code metrics 

 
It has been shown that fault proneness of the 

component can be successfully predicted by using its 

code metrics: size, complexity and historical code churn 

are positively correlated with the number of failures 

spotted in the component [3]. Since regressions are 

actually consequences of failures, we assume that 

complex components with high historical code churn 

might have a higher number of regressions as well. Also, 

making a fix in a large and complex component is a 

complicated task for a developer and can increase chances 

of making a mistake, so code metrics were included in the 

set of predictor variables. Three major classes of code 

metrics were used in this study: 

- Complexity metrics describe internal complexity of the 

component. Examples of complexity metrics are 

component size or number of global parameters in it; 

- Object-oriented metrics describe complexity of 

components developed with using of object-oriented 

methodology. Examples of object-oriented metrics are 

number of classes in the module, size of the class 

hierarchy, number of methods in the class; 

- Code churn describe the history of changes in the 

component. Examples of churn metrics are number of 
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changed code lines or functions in the component, as 

well as number and properties of bugs fixed in it. 

Complexity and object-oriented metrics were collected 

for each binary module and function using MaX 

framework [10]. MaX is an automated tool that can 

collect code metrics at binary module and function level. 

Churn metrics were collected for each binary module, 

source file and function using custom-developed tool 

called Binary Change Tracer (BCT).  

 

2.3. Dependency metrics 

 
Components in a software system do not exist in 

isolation: they interact in a number of ways. For example, 

an application can load a dynamically linked library and 

call functions or access data structures located in it. 

Obviously, if the library is not present in the system, 

application will not work properly, so it can be said that 

application depends on the library.  

Dependencies between all components of software 

system form a dependency graph – a directed graph 

G={C, D}, where components form a set of vertices 

C={c1,…,cN} and dependencies form set of edges  

D={d1,…,dM}. Number of dependencies  can be as high 

as . If component ci depends on another 

components cj, there exists an edge in the graph dij=(ci, cj) 

 D. For component ci this dependency is called an 

outgoing dependency, for component cj it is an incoming 

dependency.  

It has been shown [1] that data and call dependencies 

can be useful predictors of component fault proneness. In 

this study dependency metrics are used as predictors of 

the fix regression proneness.  

Dependency metrics for a code change were defined 

by using information about changed components and a 

structure of the call graph. Suppose that fix affects a 

subset of components . Then dependencies, linking 

these components to any other components in software 

system, are constituting a set of affected dependencies 

. Affected dependency  is a part of set 

 if or . 

We distinguish two basic types of affected 

dependencies (see Figure 1): 

- External dependency is a dependency 

between a changed component and non-

changed component  

- Internal dependency  is a dependency 

between two changed components  

In this study dependency data was collected at 

function and binary levels. If data is collected at function 

level, a set of changed functions Fc={f1,…,fK} is defined. 

Correspondingly, at the binary level, a set of changed 

binaries Bc={b1,…,bL} is defined. It allows us to define 

four dependency metrics for each fix: 

- BinaryExternalDependenciesAffected: total number 

of external dependencies for binary modules Bc, 

affected by the fix; 

- BinaryInternalDependenciesAffected: total number 

of internal dependencies between binary modules Bc, 

affected by the fix. 

Similarly, FunctionExternalDependenciesAffected 

and FunctionInternalDependenciesAffected metrics 

were defined for the functions Fc, affected by the fix.   

Number of dependencies for each affected function 

was also considered, resulting in following metrics: 

- IncomingDependenciesCount – number of incoming 

dependencies of the function; 

- OutgoingDependenciesCount – number of outgoing 

dependencies of the function; 

F4
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F3F2

F1

F7

F6

F1

Legend:

Non-changed 

function

F4 Changed function

Non-affected dependency

Affected dependency 
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(internal)

 Figure 1. Dependency metrics 
 

MaX framework was used to extract dependency 

information for software system. In addition to the code 

metrics, MaX can also collect call and data dependency 

information for each function in the software system. 

 

3. Measuring accuracy 

 
Model, developed during this study, can be viewed as 

a binary classifier: it is classifying fixes as regression 

prone and non-regression prone. There are four possible 

outcomes of classifications: 

- True Positive (TP): fix is regression prone and was 

classified as regression-prone; 
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- False Positive (FP): fix is not regression prone, but 

was classified as regression-prone; 

- True Negative (TN): fix is not regression prone and 

was classified as not regression prone; 

- False Negative (FN): fix is regression prone, but was 

classified as not regression prone. 

Based on these outcomes, a number of metrics to 

measure classification performance have been developed 

[11, 12]: 

 

 

 

However, many statistical methods, such as logistic 

regression, do not directly specify if a fix is regression 

prone or not. Instead, they produce a number, 

representing a probability of regression for a fix. To 

convert this number into an actual class label it is 

necessary to define a threshold. Fix is considered as 

regression prone if output of the classifier is higher than 

the threshold and as non-regression prone, if output is 

below the threshold. To measure change of classifier 

performance depending on the threshold, we used a 

technique called Receiver Operating Characteristic 

(ROC) graphs. 

ROC graph is a two-dimensional graph, where true 

positive rate (recall) is plotted on the Y axis and false 

positive rate is plotted on the X axis [11]. ROC curve for 

an ideal classifier is a straight line from (0,1) to (1,1). 

Line from (0,0) to (1,1) implies a worst possible classifier 

that is no better than a random guessing. Area under ROC 

curve (AUC) can serve as a single number to measure 

classifier’s performance. It can vary from 0.5 for the 

worst classifier to 1.0 for the best possible one. 

 

4. Model building 

 
Subject of this study is Microsoft Windows XP - an 

operating system from Microsoft Corporation. It is a large 

software system composed of several millions lines of 

code which constitute thousands of binary modules. At 

the moment of writing this paper Windows XP has 

undergone two major maintenance releases (service 

packs) and numerous smaller fixes. To train the model we 

scanned the whole code of the system and selected data 

on a large number of bug records (fixes) made after 

Windows XP SP2 was released (August 2004). Only 

unique bug records (ones that point to different sets of 

check-ins) were included into the dataset. To make sure 

that all regressions in selected fixes were revealed, no 

data was collected during the last 18 months of the study. 

Nevertheless, dataset appeared to be sparse: only a small 

fraction of these fixes caused software regressions. 

A number of metrics were collected for each fix: these 

metrics include change metrics, dependency metrics and 

code metrics. Code metrics were collected for each 

Windows component, affected by the fix. These include 

complexity metrics, object-oriented metrics and pre-

release code churn. Pre-release code churn for each 

component was collected during Windows XP SP2 

development (from September 2003 to August 2004). 

Three different levels of granularity were used to collect 

code metrics: code churn and bug data were collected at 

the level of binary modules, source files and functions; 

while complexity and object-oriented metrics were 

collected at function and binary module levels only.  

A classic table-based approach was used to build the 

model. For each fix, a vector  of independent variables 

(predictors) and a dependent variable y (response) were 

defined. Independent variables are fix metrics, which 

describe a change. Dependent variable is an occurrence of 

regression for a certain fix.  

Stepwise logistic regression [5] was used to build a 

statistical model. As many other statistical methods, like 

decision trees or neural networks, logistic regression 

require dimension of the vector  be a constant across all 

data points. However, a single fix can lead to changes in 

multiple components: it is not uncommon for a large 

complex fix to affect a number of source files or even 

binary modules. Thus if code metrics for all affected 

variables are included into the vector , its size will vary. 

To make dimensions of the  vector constant, we 

aggregated values of code metrics for all components, 

affected by the single fix [12].  

Suppose the fix affects components (c1,c2,…,cn), and 

code metrics (m1(cj),…,mk(cj)) are defined for any 

component cj  (c1,c2,…,cn). In this case, an aggregated 

value of metric m1 across components (c1,c2,…,cn) is  

 

(c1,c2,…,cn)  = f(m1(c1),m1(c2),…,m1(cn)),   

 

where f(m1(c1),m1(c2),…,m1(cn)) is an aggregating 

function. 

In this study max(m1(c1),m1(c2),…,m1(cn)) and 

median(m1(c1),m1(c2),…,m1(cn)) functions were used to 

aggregate values of metrics m1(c1),m1(c2),…,m1(cn).  

To measure a predictive power of the model, data 

splitting technique [12] was used. 50 random splits were 

done; during each split, 70% of fixes were selected to 

form a training set and the remaining 30% formed a test 

set. Averaged ROC graph were created as it was 

discussed in [11]. 

To evaluate relative importance of different groups of 

metrics, four models were built separately for dependency 

metrics, experience metrics, fix metrics and code metrics. 

For each model, 50 random splits were done, and, during 

each random split, ROC curve was built. Based on these 

50 values of AUC, mean value of area under the curve 
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μ(AUC), as well as its standard deviation σ(AUC) were 

calculated. Results are reported in the Table 1.  

 
Table 1. Model performance for the different 

groups of metrics 

Metric group μ(AUC) σ(AUC) 

Fix metrics (no experience) 0.73 0.046 

Code metrics 0.70 0.040 

Dependency metrics 0.69 0.049 

Experience metrics 0.54 0.044 

 

To see if these models provide statistically different 

values of AUC, author performed a series of unpaired t-

tests to compare resulting AUCs. According to these 

tests, fix metrics appeared to be better predictors of the 

regression proneness for a fix (p-value p<0.001) than 

code or dependency metrics. No statistically significant 

difference (p=0.56) was found between the accuracy of 

the models, based on dependency and code metrics.  
Surprisingly, experience metrics didn’t prove to be 

informative ones (p<0.001). One of possible explanations 

is that the most complex and risky fixes are done by the 

most experienced programmers, and simple fixes are left 

to novice engineers. Anyway, this phenomenon might be 

left as an opportunity for a future investigation. 

To build the final model, all metrics were used. 

Stepwise logistic regression reported five most significant 

predictors (see Table 2): 

- SourceFilesChanged: number of source files changed 

due to the fix; 

- NewFeature: 1, if this fix is a new feature, 0 

otherwise; 

- PreReleaseFunctionsDeleted: number of functions 

deleted from the binary module during the pre-release 

timeframe; 

- MaxFunctionLocalCoupling: maximum value of 

FunctionLocalCoupling metric across all functions in 

the binary module. FunctionLocalCoupling is the 

number of calls to other classes, whose instances are 

created as local variables in the function;  

- MaxSubClasses: Maximum number of sub classes 

across all high-level classes in the binary module; 

FunctionsDeleted, MaxFunctionLocalCoupling and 

MaxSubClasses are code metrics, defined for binary 

modules. That’s why median values of these metrics for 

all binaries, affected by the fix, were taken as predictors.  

 

Table 2. Most significant predictors  

Metric name  Type p-value 

SourceFilesChanged Fix 0.001 

NewFeature Fix 0.03 

Median(FunctionsDeleted) Code 0.02 

Median(MaxFunctionLocalCoupling) Code 0.002 

Median(MaxSubClasses) Code <0.001 

Resulting ROC graph for the final model is shown in 

Figure 2. Its mean area under ROC curve is μ(AUC) = 

0.77 and standard deviation σ(AUC)=0.040, which is 

significantly better than random draw (AUC=0.5). What 

is more important, the model can detect the most risky 

fixes with sufficient accuracy, which allows to intensify 

testing activities for them and so enable regressions to be 

discovered in these fixes early. 

 

 Figure 2. ROC and precision-recall graphs for 
the model 

 
In addition to logistic regression, author evaluated an 

accuracy of regression prediction models, based on other 

machine learning algorithms, available in MATLAB (see 

Table 3). Unpaired t-tests shown that logistic regression 

model has somewhat higher accuracy than multilayer 

perceptron with Principal Component Analysis (p=0.029), 

while regression tree has the worst accuracy (p<0.001). 

 
Table 3. Comparative performance of different 

machine learning algorithms 

Machine learning algorithm μ(AUC) σ(AUC) 

Logistic regression 0.77 0.040 

Multilayer perceptron + PCA 0.75 0.058 

CART tree 0.67 0.069 

 

5. Related work 

 
Using statistical models to predict software risk is a 

widely used technique. Almost all studies are 

concentrated on predicting fault proneness [1, 2, 3, 6, 7] 

of components in the software system. All of these works 

are using various types of code metrics to predict fault 

proneness of the components: one kind of such metrics is 

code churn, which is defined as an amount of changes in 
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the software system [3]. Another class of metrics is 

complexity metrics, like code complexity, size or number 

of functions in the component [7]. For object-oriented 

programs special types of object-oriented metrics can be 

defined [4].  

Different statistical methods were used to build 

models, including decision trees, neural networks and 

logistic regression [1, 7, 8]. Many works recommend 

using PCA [2, 10] to reduce dimensionality of input data 

and eliminate multicollinearity between various metrics.  

Prediction of software regressions appears to be a less 

explored area. By the time of writing this paper, only the 

work of A. Mockus and D. Weiss on predicting risk of 

software changes [9] was known to the author. This work 

shows a possibility to successfully predict risk of 

software change. Fix metrics, such as fix size, experience 

of a developer, number of affected subsystems were used 

to predict risk of software changes. 

Presented work extends state of the art by considering 

additional metrics for regression prediction like pre-

release code churn, dependency, code complexity and 

object-oriented metrics. Relative importance of different 

groups of metrics is also evaluated and best set of metrics 

is selected for building the model. 

  
6. Experience and lessons learned 

 
In a presented paper we have shown that risk of 

regression can be successfully predicted for a code 

change and pointed to metrics which are good predictors 

of regression risk. As a result of this study, a practical 

system for regression prediction has been developed and 

deployed in the Windows Serviceability team.  

Once a development of the new fix is done, the system 

automatically analyzes changes, caused by the fix: it 

extracts fix metrics and calculates risk of regression for 

that fix. In addition to that, the system also conducts 

change impact analysis for the fix. Resulting report is 

presented to the test engineer: the report contains both 

change impact information as well as a predicted risk of 

regression. These two pieces of knowledge complement 

each other: change impact information tells the engineer 

which Windows components might be impacted because 

of dependencies on changed components, and which tests 

should be run to verify changed code. At the same time, 

regression risk gives a hint how much testing should be 

done: it is recommended that risky fixes with high 

probability of regression should receive more testing, 

than low-risk fixes. 

The model has been deployed in March 2008 and 

quickly gained popularity among test engineers: based on 

usage logs we estimate that at least 70% of all test 

engineers in the Windows Serviceability team are using 

regression risk reports in their work.  

To improve model’s accuracy, we plan to collect more 

data on different versions of Windows, and introduce 

more metrics, such as presence of the code review for the 

fix. Also, in addition to logistic regression, we are going 

to experiment with different machine learning methods, 

such as Naïve Bayes and Support Vector Machines. To 

see if metrics, selected by the model, can be used as risk 

predictors for different types of software projects, we plan 

to evaluate our risk prediction model on other Microsoft 

products, such as SQL Server and Office. 
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