
Using Statistical Models to Predict Software Regressions

Alexander Tarvo

Microsoft Corporation, Redmond, WA 98052

alexta@microsoft.com

Abstract

Incorrect changes made to the stable parts of a

software system can cause failures – software

regressions. Early detection of faulty code changes can

be beneficial for the quality of a software system when

these errors can be fixed before the system is released. In

this paper, a statistical model for predicting software

regressions is proposed. The model predicts risk of

regression for a code change by using software metrics:

type and size of the change, number of affected

components, dependency metrics, developer’s experience

and code metrics of the affected components. Prediction

results could be used to prioritize testing of changes: the

higher is the risk of regression for the change, the more

thorough testing it should receive.

1. Introduction

Despites all efforts of engineering community, bugs in

software systems are still inevitable today. Probably, one

of the most unpleasant classes of bugs is software

regressions – undesired changes in the behavior of

already stable parts and features of the software system.

Software regressions can lead to significant problems for

the software manufacturer, if are not detected and fixed

early. If software regression is not detected during the

testing, customers will be affected by undesirable side

effects of the change. Such situation will result not only

in a financial loss for a manufacturer (in any case, the

issue needs to be fixed and update issued), but its

reputation will also suffer.

The key method of avoiding negative consequences of

software regressions is testing of all code changes.

However, cost and time restrictions often prevent

engineers from doing exhaustive testing of all changes, so

some method of test prioritization is necessary. Probably,

one of the most straightforward and widely used of such

methods is assessment of the risk, associated with each

code change, by an expert or group of experts. The higher

is the risk of regression, associated with the change

(which can be also called regression proneness of the

change), the more thorough testing it should receive.

 However¸ manual risk estimation is costly and

subjective: it relies on skills and experience of experts. To

address this problem, we developed a statistical model to

predict risk of regressions. The model utilizes knowledge

of the software system, represented in a form of software

metrics, and provides an objective quantification of

regression risk for each code change. Predicted risk is

used by test engineers to plan testing activities for

changes: high-risk changes should pass through an

extensive testing to discover possible regressions while

changes with low probability of regression can pass just

sanity testing.

This paper presents an industrial case study, where we

built the system to predict software regressions by using

historical data on changes in Windows XP operating

system. Analysis of system’s accuracy shows it could be

successfully used to predict software regressions.

2. Data collection

In our work we concentrate on post-release changes, or

fixes, which are made after software system is released to

the market. These changes include bug fixes, new

features, reliability or performance improvements.

Information on fixes is stored in the bug-tracking

database in the form of bug records. If the bug record

describes a fix for a software regression, a link to the bug

which resulted in regression is provided in the record.

This allows for identifying fixes which caused regressions

– regressed fixes. Only regressions, caused by changes in

a source code of the software system, are considered.

Since a fix typically results in a code change, the

corresponding bug record can be related to the set of

changes in the program source code. These changes are

grouped in one or more check-ins – atomic changes of a

source code, recorded in a version control system. Each

check-in contains a list of changed source files,

differences between old and new versions of these files,

date of the change, name of a developer and a brief

description of the change. By identifying check-ins,

19th International Symposium on Software Reliability Engineering

1071-9458/08 $25.00 © 2008 IEEE

DOI 10.1109/ISSRE.2008.21

259

related to the fix, it is possible to detect components of

the software system, affected by it.

Three major types of metrics are used to describe code

changes in this study: these are (1) change metrics, (2)

code metrics and (3) dependency metrics.

2.1. Change metrics

Change metrics describe properties of a software

change itself: size of the change, number of changed

components, experience of the developers and other

properties. Some major classes of change metrics are

described below.

Number of changed components is one of the most

important properties of the fix: complex fixes that cause

changes in a large number of components are expected to

be more regression prone than small fixes. By analyzing

source and binary code of the software system, following

metrics were defined:

- AddedFunctionsCount: number of functions, added

because of the fix;

- DeletedFunctionsCount: number of functions, deleted

because of the fix;

- ChangedFunctionsCount: number of functions,

changed because of the fix;

- AddedSourceFilesCount: number of source files,

added because of the fix;

- DeletedSourceFilesCount: number of source files,

deleted because of the fix;

- ChangedSourceFilesCount: number of source files,

changed because of the fix;

- BinariesAffected: number of binary modules affected

by the fix.

Another group of metrics is related to the experience

of developer, who performed the change – we call these

metrics experience metrics. It can be possible that change

done by an experienced person can be of a higher quality

than that of an inexperienced programmer [9]. One

possible method to estimate developer’s experience is

looking at all fixes done by this person in past: the more

fixes the developer worked on in past, the higher is

his/her experience. Developer is considered experienced

if he/she did more check-ins than 75% of other

developers during the same period. Correspondingly,

inexperienced developer did less than 25% of fixes in

comparison to other developers.

To measure overall programming experience of the

developer we defined global experience metrics, based on

the number of changes he/she made into the whole

software system during the past 12 months:

- CheckinsLastYear: overall number of check-ins by

this developer;

- ExperiencedDeveloper: 1, if developer did 15 or more

check-ins; 0 otherwise;

- InxperiencedDeveloper: 1, if developer did 2 or less

check-ins; 0 otherwise;

However, not only overall experience of developer

matters, but his/her knowledge of the particular area of

source code should be considered as well. To measure

developer’s knowledge of the affected area, the number

of changes he/she had made in this part of the system

during previous 12 months was counted:

- CheckinsLastYearInComponent: number of check-

ins developer did in the source code of the component,

that is affected by a fix;

- ExperiencedDeveloperInComponent: 1, if developer

did 7 or more check-ins in the source code of the

affected component, 0 otherwise;

- InxperiencedDeveloperInComponent: 1, if developer

did 1 or less check-in in the source code of the

affected component, 0 otherwise.

The last group of fix metrics is fix characteristics,

which describe its nature and the overall fix process:

- FixForRegression: 1, if this is a fix for a known

regression, 0 otherwise;

- IsNewFeature: 1, if this fix is a new feature, 0 if it is a

bug fix;

- CheckinCount: number of check-ins required to make

the change;

- DeveloperCount: number of developers, working on

the change;

- BugLinesDelta: summary change in size (LOC) of

affected functions.

2.2. Code metrics

It has been shown that fault proneness of the

component can be successfully predicted by using its

code metrics: size, complexity and historical code churn

are positively correlated with the number of failures

spotted in the component [3]. Since regressions are

actually consequences of failures, we assume that

complex components with high historical code churn

might have a higher number of regressions as well. Also,

making a fix in a large and complex component is a

complicated task for a developer and can increase chances

of making a mistake, so code metrics were included in the

set of predictor variables. Three major classes of code

metrics were used in this study:

- Complexity metrics describe internal complexity of the

component. Examples of complexity metrics are

component size or number of global parameters in it;

- Object-oriented metrics describe complexity of

components developed with using of object-oriented

methodology. Examples of object-oriented metrics are

number of classes in the module, size of the class

hierarchy, number of methods in the class;

- Code churn describe the history of changes in the

component. Examples of churn metrics are number of

260

changed code lines or functions in the component, as

well as number and properties of bugs fixed in it.

Complexity and object-oriented metrics were collected

for each binary module and function using MaX

framework [10]. MaX is an automated tool that can

collect code metrics at binary module and function level.

Churn metrics were collected for each binary module,

source file and function using custom-developed tool

called Binary Change Tracer (BCT).

2.3. Dependency metrics

Components in a software system do not exist in

isolation: they interact in a number of ways. For example,

an application can load a dynamically linked library and

call functions or access data structures located in it.

Obviously, if the library is not present in the system,

application will not work properly, so it can be said that

application depends on the library.

Dependencies between all components of software

system form a dependency graph – a directed graph

G={C, D}, where components form a set of vertices

C={c1,…,cN} and dependencies form set of edges

D={d1,…,dM}. Number of dependencies can be as high

as . If component ci depends on another

components cj, there exists an edge in the graph dij=(ci, cj)

 D. For component ci this dependency is called an

outgoing dependency, for component cj it is an incoming

dependency.

It has been shown [1] that data and call dependencies

can be useful predictors of component fault proneness. In

this study dependency metrics are used as predictors of

the fix regression proneness.

Dependency metrics for a code change were defined

by using information about changed components and a

structure of the call graph. Suppose that fix affects a

subset of components . Then dependencies, linking

these components to any other components in software

system, are constituting a set of affected dependencies

. Affected dependency is a part of set

 if or .

We distinguish two basic types of affected

dependencies (see Figure 1):

- External dependency is a dependency

between a changed component and non-

changed component

- Internal dependency is a dependency

between two changed components

In this study dependency data was collected at

function and binary levels. If data is collected at function

level, a set of changed functions Fc={f1,…,fK} is defined.

Correspondingly, at the binary level, a set of changed

binaries Bc={b1,…,bL} is defined. It allows us to define

four dependency metrics for each fix:

- BinaryExternalDependenciesAffected: total number

of external dependencies for binary modules Bc,

affected by the fix;

- BinaryInternalDependenciesAffected: total number

of internal dependencies between binary modules Bc,

affected by the fix.

Similarly, FunctionExternalDependenciesAffected

and FunctionInternalDependenciesAffected metrics

were defined for the functions Fc, affected by the fix.

Number of dependencies for each affected function

was also considered, resulting in following metrics:

- IncomingDependenciesCount – number of incoming

dependencies of the function;

- OutgoingDependenciesCount – number of outgoing

dependencies of the function;

F4

F5

F7

F3F2

F1

F7

F6

F1

Legend:

Non-changed

function

F4 Changed function

Non-affected dependency

Affected dependency

(external)

Affected dependency

(internal)

 Figure 1. Dependency metrics

MaX framework was used to extract dependency

information for software system. In addition to the code

metrics, MaX can also collect call and data dependency

information for each function in the software system.

3. Measuring accuracy

Model, developed during this study, can be viewed as

a binary classifier: it is classifying fixes as regression

prone and non-regression prone. There are four possible

outcomes of classifications:

- True Positive (TP): fix is regression prone and was

classified as regression-prone;

261

- False Positive (FP): fix is not regression prone, but

was classified as regression-prone;

- True Negative (TN): fix is not regression prone and

was classified as not regression prone;

- False Negative (FN): fix is regression prone, but was

classified as not regression prone.

Based on these outcomes, a number of metrics to

measure classification performance have been developed

[11, 12]:

However, many statistical methods, such as logistic

regression, do not directly specify if a fix is regression

prone or not. Instead, they produce a number,

representing a probability of regression for a fix. To

convert this number into an actual class label it is

necessary to define a threshold. Fix is considered as

regression prone if output of the classifier is higher than

the threshold and as non-regression prone, if output is

below the threshold. To measure change of classifier

performance depending on the threshold, we used a

technique called Receiver Operating Characteristic

(ROC) graphs.

ROC graph is a two-dimensional graph, where true

positive rate (recall) is plotted on the Y axis and false

positive rate is plotted on the X axis [11]. ROC curve for

an ideal classifier is a straight line from (0,1) to (1,1).

Line from (0,0) to (1,1) implies a worst possible classifier

that is no better than a random guessing. Area under ROC

curve (AUC) can serve as a single number to measure

classifier’s performance. It can vary from 0.5 for the

worst classifier to 1.0 for the best possible one.

4. Model building

Subject of this study is Microsoft Windows XP - an

operating system from Microsoft Corporation. It is a large

software system composed of several millions lines of

code which constitute thousands of binary modules. At

the moment of writing this paper Windows XP has

undergone two major maintenance releases (service

packs) and numerous smaller fixes. To train the model we

scanned the whole code of the system and selected data

on a large number of bug records (fixes) made after

Windows XP SP2 was released (August 2004). Only

unique bug records (ones that point to different sets of

check-ins) were included into the dataset. To make sure

that all regressions in selected fixes were revealed, no

data was collected during the last 18 months of the study.

Nevertheless, dataset appeared to be sparse: only a small

fraction of these fixes caused software regressions.

A number of metrics were collected for each fix: these

metrics include change metrics, dependency metrics and

code metrics. Code metrics were collected for each

Windows component, affected by the fix. These include

complexity metrics, object-oriented metrics and pre-

release code churn. Pre-release code churn for each

component was collected during Windows XP SP2

development (from September 2003 to August 2004).

Three different levels of granularity were used to collect

code metrics: code churn and bug data were collected at

the level of binary modules, source files and functions;

while complexity and object-oriented metrics were

collected at function and binary module levels only.

A classic table-based approach was used to build the

model. For each fix, a vector of independent variables

(predictors) and a dependent variable y (response) were

defined. Independent variables are fix metrics, which

describe a change. Dependent variable is an occurrence of

regression for a certain fix.

Stepwise logistic regression [5] was used to build a

statistical model. As many other statistical methods, like

decision trees or neural networks, logistic regression

require dimension of the vector be a constant across all

data points. However, a single fix can lead to changes in

multiple components: it is not uncommon for a large

complex fix to affect a number of source files or even

binary modules. Thus if code metrics for all affected

variables are included into the vector , its size will vary.

To make dimensions of the vector constant, we

aggregated values of code metrics for all components,

affected by the single fix [12].

Suppose the fix affects components (c1,c2,…,cn), and

code metrics (m1(cj),…,mk(cj)) are defined for any

component cj (c1,c2,…,cn). In this case, an aggregated

value of metric m1 across components (c1,c2,…,cn) is

(c1,c2,…,cn) = f(m1(c1),m1(c2),…,m1(cn)),

where f(m1(c1),m1(c2),…,m1(cn)) is an aggregating

function.

In this study max(m1(c1),m1(c2),…,m1(cn)) and

median(m1(c1),m1(c2),…,m1(cn)) functions were used to

aggregate values of metrics m1(c1),m1(c2),…,m1(cn).

To measure a predictive power of the model, data

splitting technique [12] was used. 50 random splits were

done; during each split, 70% of fixes were selected to

form a training set and the remaining 30% formed a test

set. Averaged ROC graph were created as it was

discussed in [11].

To evaluate relative importance of different groups of

metrics, four models were built separately for dependency

metrics, experience metrics, fix metrics and code metrics.

For each model, 50 random splits were done, and, during

each random split, ROC curve was built. Based on these

50 values of AUC, mean value of area under the curve

262

μ(AUC), as well as its standard deviation σ(AUC) were

calculated. Results are reported in the Table 1.

Table 1. Model performance for the different

groups of metrics

Metric group μ(AUC) σ(AUC)

Fix metrics (no experience) 0.73 0.046

Code metrics 0.70 0.040

Dependency metrics 0.69 0.049

Experience metrics 0.54 0.044

To see if these models provide statistically different

values of AUC, author performed a series of unpaired t-

tests to compare resulting AUCs. According to these

tests, fix metrics appeared to be better predictors of the

regression proneness for a fix (p-value p<0.001) than

code or dependency metrics. No statistically significant

difference (p=0.56) was found between the accuracy of

the models, based on dependency and code metrics.
Surprisingly, experience metrics didn’t prove to be

informative ones (p<0.001). One of possible explanations

is that the most complex and risky fixes are done by the

most experienced programmers, and simple fixes are left

to novice engineers. Anyway, this phenomenon might be

left as an opportunity for a future investigation.

To build the final model, all metrics were used.

Stepwise logistic regression reported five most significant

predictors (see Table 2):

- SourceFilesChanged: number of source files changed

due to the fix;

- NewFeature: 1, if this fix is a new feature, 0

otherwise;

- PreReleaseFunctionsDeleted: number of functions

deleted from the binary module during the pre-release

timeframe;

- MaxFunctionLocalCoupling: maximum value of

FunctionLocalCoupling metric across all functions in

the binary module. FunctionLocalCoupling is the

number of calls to other classes, whose instances are

created as local variables in the function;

- MaxSubClasses: Maximum number of sub classes

across all high-level classes in the binary module;

FunctionsDeleted, MaxFunctionLocalCoupling and

MaxSubClasses are code metrics, defined for binary

modules. That’s why median values of these metrics for

all binaries, affected by the fix, were taken as predictors.

Table 2. Most significant predictors

Metric name Type p-value

SourceFilesChanged Fix 0.001

NewFeature Fix 0.03

Median(FunctionsDeleted) Code 0.02

Median(MaxFunctionLocalCoupling) Code 0.002

Median(MaxSubClasses) Code <0.001

Resulting ROC graph for the final model is shown in

Figure 2. Its mean area under ROC curve is μ(AUC) =

0.77 and standard deviation σ(AUC)=0.040, which is

significantly better than random draw (AUC=0.5). What

is more important, the model can detect the most risky

fixes with sufficient accuracy, which allows to intensify

testing activities for them and so enable regressions to be

discovered in these fixes early.

 Figure 2. ROC and precision-recall graphs for
the model

In addition to logistic regression, author evaluated an

accuracy of regression prediction models, based on other

machine learning algorithms, available in MATLAB (see

Table 3). Unpaired t-tests shown that logistic regression

model has somewhat higher accuracy than multilayer

perceptron with Principal Component Analysis (p=0.029),

while regression tree has the worst accuracy (p<0.001).

Table 3. Comparative performance of different

machine learning algorithms

Machine learning algorithm μ(AUC) σ(AUC)

Logistic regression 0.77 0.040

Multilayer perceptron + PCA 0.75 0.058

CART tree 0.67 0.069

5. Related work

Using statistical models to predict software risk is a

widely used technique. Almost all studies are

concentrated on predicting fault proneness [1, 2, 3, 6, 7]

of components in the software system. All of these works

are using various types of code metrics to predict fault

proneness of the components: one kind of such metrics is

code churn, which is defined as an amount of changes in

263

the software system [3]. Another class of metrics is

complexity metrics, like code complexity, size or number

of functions in the component [7]. For object-oriented

programs special types of object-oriented metrics can be

defined [4].

Different statistical methods were used to build

models, including decision trees, neural networks and

logistic regression [1, 7, 8]. Many works recommend

using PCA [2, 10] to reduce dimensionality of input data

and eliminate multicollinearity between various metrics.

Prediction of software regressions appears to be a less

explored area. By the time of writing this paper, only the

work of A. Mockus and D. Weiss on predicting risk of

software changes [9] was known to the author. This work

shows a possibility to successfully predict risk of

software change. Fix metrics, such as fix size, experience

of a developer, number of affected subsystems were used

to predict risk of software changes.

Presented work extends state of the art by considering

additional metrics for regression prediction like pre-

release code churn, dependency, code complexity and

object-oriented metrics. Relative importance of different

groups of metrics is also evaluated and best set of metrics

is selected for building the model.

6. Experience and lessons learned

In a presented paper we have shown that risk of

regression can be successfully predicted for a code

change and pointed to metrics which are good predictors

of regression risk. As a result of this study, a practical

system for regression prediction has been developed and

deployed in the Windows Serviceability team.

Once a development of the new fix is done, the system

automatically analyzes changes, caused by the fix: it

extracts fix metrics and calculates risk of regression for

that fix. In addition to that, the system also conducts

change impact analysis for the fix. Resulting report is

presented to the test engineer: the report contains both

change impact information as well as a predicted risk of

regression. These two pieces of knowledge complement

each other: change impact information tells the engineer

which Windows components might be impacted because

of dependencies on changed components, and which tests

should be run to verify changed code. At the same time,

regression risk gives a hint how much testing should be

done: it is recommended that risky fixes with high

probability of regression should receive more testing,

than low-risk fixes.

The model has been deployed in March 2008 and

quickly gained popularity among test engineers: based on

usage logs we estimate that at least 70% of all test

engineers in the Windows Serviceability team are using

regression risk reports in their work.

To improve model’s accuracy, we plan to collect more

data on different versions of Windows, and introduce

more metrics, such as presence of the code review for the

fix. Also, in addition to logistic regression, we are going

to experiment with different machine learning methods,

such as Naïve Bayes and Support Vector Machines. To

see if metrics, selected by the model, can be used as risk

predictors for different types of software projects, we plan

to evaluate our risk prediction model on other Microsoft

products, such as SQL Server and Office.

7. References

1. T. Zimmermann, N. Nagappan, “Predicting

Subsystem Failures Using Dependency Graph

Complexities”, Proceedings of the 18th IEEE

International Symposium on Software Reliability,

2007, pp. 227-236.

2. N. Nagappan, T. Ball, A. Zeller, “Mining metrics to

Predict Component Failures”, Proceedings of the

28th international conference on Software

engineering, 2006, pp. 452-461.

3. N. Nagappan, T. Ball, “Use of Relative Code Churn

Measures to Predict System Defect Density”,

Proceedings of the 27th international conference on

Software engineering, 2005, pp. 284-292.

4. E. Arisholm, L. C. Briand , “Predicting Fault-prone

Components in a Java Legacy System”, Proceedings

of the 2006 ACM/IEEE international symposium on

Empirical software engineering, 2006, pp. 8-17.

5. Larose D. T., “Data Mining Methods and Models”,

Wiley-Interscience, Hoboken, NJ , 2006.

6. T.M. Khoshgoftaar et al.,”Early quality prediction: a

case study in telecommunications”, IEEE Software

Vol. 13 No 1, 1996, pp. 65-71.

7. T. Menzies, J. Greenwald, A. Frank, "Data Mining

Static Code Attributes to Learn Defect Predictors,"

IEEE Transactions on Software Engineering,

vol. 33, no. 1, pp. 2-13, Jan., 2007

8. E. Arisholm, L.C. Briand, M. Fuglerud, “Data

Mining Techniques for Building Fault-proneness

Models in Telecom Java Software”, 18th IEEE

International Symposium on Software Reliability,

2007, pp. 215-224.

9. A. Mockus, D. Weiss, “Predicting risk of software

changes”, Bell Labs Tech Journal, Vol. 5, no. 2,

2000, pp. 169-180.

10. A. Srivastava, Thiagarajan. J., Schertz, C., "Efficient

Integration Testing using Dependency Analysis,"

Microsoft Research Technical Report, MSR-TR-

2005-94, 2005.

11. T. Fawcett, “An Introduction to ROC analysis”,

Pattern Recognition Letters, 26, 2006, pp. 861–874

12. Hand D.J., Mannila H., Smyth P., “Principles of

Data Mining”, The MIT Press, 2001.

264

